Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.09.2018.0187

Screening of Endophytic Antagonistic Bacterium from Phellodendron amurense and Their Biocontrol Effects against Canker Rot  

Li, Shujiang (College of Forestry, Sichuan Agricultural University)
Fang, Xinmei (College of Forestry, Sichuan Agricultural University)
Zhang, Hanlian (College of Forestry, Sichuan Agricultural University)
Zeng, Yanling (College of Forestry, Sichuan Agricultural University)
Zhu, Tianhui (College of Forestry, Sichuan Agricultural University)
Publication Information
The Plant Pathology Journal / v.35, no.3, 2019 , pp. 234-242 More about this Journal
Abstract
Thirty-four strains of bacteria were isolated from Phellodendron amurense. Using Nectria haematococca as an indicator strain, the best strain, B18, was obtained by the growth rate method. The morphological, physiological and biochemical characteristics of strain B18 and its 16S DNA gene sequence were identified, and the biocontrol effect of strain B18 was assessed in pot and field tests, as well as in a field-control test. Drilling methods were used to determine the antibacterial activity of metabolites from strain B18 and their effects on the growth of pathogen mycelia and spores. The best bacteriostatic rate was 85.4%. B18 can hydrolyse starch and oxidize glucose but does not produce gas; a positive result was obtained in a gelatine liquefaction test. According to 16S DNA gene sequencing, strain B18 is Bacillus methylotrophicus (GenBank accession number: MG457759). The results of pot and field-control trials showed 98% disease control when inoculating $10^8cfu/ml$ of the strain. The disease control effect of the B18 culture liquid (concentrations of $10^8$, $2{\times}10^6$, $10^6$, $5{\times}10^5$ and $2.5{\times}10^5cfu/ml$) in the field-control test was higher than 80%, and the cure rate of the original delivery solution was 96%. Therefore, in the practical forestry production, a $2.5{\times}10^5cfu/ml$ culture liquidshould be applied in advance to achieve good control effects.
Keywords
Bacillus methylotrophicus; biocontrol bacterium; canker rot; control efficiency; Nectria haematococca;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yu, X., Ai, C., Xin, L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47:138-145.   DOI
2 Zhang, T., Li, R., Qian, H., Mu, W., Miao, M. and Jiang, B. 2014. Biosynthesis of levan by levansucrase from Bacillus methylotrophicus SK 21.002. Carbohydr. Polym. 101:975-981.   DOI
3 Zou, C. L., Zhao, G. C., Jiang, Y. C., Lin, D. Q. and Gu, X. Y. 2015. Screening of a flocculent acetic acid degrading bacterium and its degradative characteristics. J. Nanjing Agric. Univ. 38:830-837.
4 Montanari, G., Borsari, A., Chiavari, C., Ferri, G., Zambonelli, C. and Grazia, L. 2004. Morphological and phenotypical characterization of Bacillus sporothermodurans. J. Appl. Microbiol. 97:802-809.   DOI
5 Obagwu, J. and Korsten, L. 2003. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biol. Technol. 28:187-194.   DOI
6 Passari, A. K., Lalsiamthari, P. C., Zothanpuia, Leo, V. V., Mishra, V. K., Yadav, M. K., Gupta, V. K. and Singh, B. P. 2018. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur. J. Plant Pathol. 150:831-846.   DOI
7 Kamal, M. M., Lindbeck, K. D., Savocchia, S. and Ash, G. J. 2016. Biological control of Sclerotinia stem rot of canola using antagonistic bacteria. Plant Pathol. 64:1375-1384.   DOI
8 Hoyt, J. R., Cheng, T. L., Langwig, K. E., Hee, M. M., Frik, W. F. and Kilpatrict A. M. 2015. Bacteria isolated bats inhibit growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS One 10:e0121329.   DOI
9 Iasur-Kruh, L., Zahavi, T., Barkai, R., Freilich, S., Zchori-Fein, E. and Naor, V. 2018. Dyella-Like bacterium isolated from an insect as a potential biocontrol agent against Grapevine yellows. Phytopathology 108:336-341.   DOI
10 Jiao, W., Zhou, R., Fu, J., Xu, H. and Hao, N. 2017. First report of Nothophoma quercina causing leaf spot disease of Phellodendron amurense in China. Plant Dis. 101:1820.
11 Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.   DOI
12 Kumar, R. and Hwang, J. S. 2006. Larvicidal efficiency of aquatic predateors: A perspective for mosquito biocontrol. Zoological Stud. 45:447-466.
13 Sun, P., Hui, C., Wang, S., Khan, R. A., Zhang, Q. and Zhao, Y. H. 2016. Enhancement of algicidal properties of immobilized Bacillus methylotrophicus ZJU by coating with magnetic $Fe_3O_4$ nanoparticles and wheat bran. J. Hazard. Mater. 301:65-73.   DOI
14 Peng, Y., Jiang, B., Zhang, T., Mu, W., Miao, M. and Hua, Y. 2015. High-level production of poly (${\gamma}$-glutamic acid) by a newly isolated glutamate-independent strain Bacillus methylotrophicus. Process Biochem. 50:329-335.   DOI
15 Perez-Flores, P., Valencia-Cantero, E., Altamirano-Hernandez, J., Pelagio-Flores, R., Lopez-Bucio, J., Garcia-Juarez, P. and Macias-Rodriguez, L. 2017. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma 254:2201-2213.   DOI
16 Shan, H., Zhao, M., Chen, D., Cheng, J., Li, J., Feng, Z., Ma, Z. and An, D. 2013. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79. Crop Prot. 44:29-37.   DOI
17 Frikha-Gargouri, O., Abdallah, D. B., Ghorbel, I., Charfeddine, I., Jlaiel, L., Triki, M. A. and Tounsi, S. 2017. Lipopeptides from a novel Bacillus methylotrophicus 39b strain suppress Agrobacterium crown gall tumours on tomato plants. Pest Manag. Sci. 73:568-574.   DOI
18 Hornby, D. 1969. Gravimetrical and mycological investigations of soil suspensions in the soil dilution plate technique. J. Appl. Bacteriol. 32:244-258.   DOI
19 Bekierkunst, A. and Szulga, T. 1954. A new method for determining the growth rate of M. tuberculosis and its application to the study of the toxic effects of Streptomycin and isonicotinic hydrazide acid on tubercle bacilli. Schweiz. Z. Pathol. Bakteriol. 17:47-72.
20 Li, S. J., Cui, Y. T., Fang, X. M., He, Q. Q., Zhu, T. H., Qiao, T. M. and Han, S. 2018. First report of Nectria haematococca as the causal agent of canker rot in Phellodendron amurense in China. Plant Dis. 102:1033.
21 Boukaew, S., Prasertsan, P., Troulet, C. and Bardin, M. 2017. Biological control of tomato gray mold caused by Botrytis cinerea, by using Streptomyces spp.. BioControl 62:793-803.   DOI
22 Etesami, H. and Alikhani, H. A. 2017. Evaluation of grampositive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa, L.) pathogens. Eur. J. Plant Pathol. 147:7-14.   DOI
23 Chandankere, R., Yao, J., Choi, M. M. F., Masakorala, K. and Chan, Y. 2013. An efficient biosurfactant producing and crude-oil emulsifying bacterium Bacillus methylotrophicus USTBa isolated from petroleum reservoir. Biochem. Eng. J. 74:46-53.   DOI
24 Chandankere, R., Yao, J., Cai, M., Masakorala, K., Jain, A. K. and Choi, M. M. F. 2014. Properties and characterization of biosurfactant in crude oil biodegradation by bacterium Bacillus methylotrophicus USTBa. Fuel 122:140-148.   DOI
25 Edwards, T. and McBride, B. C. 1975. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29:540-545.   DOI
26 Azad, M. A. K., Yokota, S., Ohkubo, T., Andoh, Y., Yahara, S. and Yoshizawa, N. 2005. In vitro, regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tissue Organ Cult. 80:43-50.   DOI
27 Faltin, F., Lottmann, J., Grosch, R. and Berg, G. 2004. Strategy to select and assess antagonistic bacteria for biological control of Rhizoctonia solani Kuhn. Can. J. Microbiol. 50:811-820.   DOI
28 Fei, Y. T., Liu, D. M., Luo, T. H., Chen, G., Wu, H., Li, L. and Yu, Y. G. 2014. Molecular characterization of Lactobacillus plantarum DMDL 9010, a strain with efficient nitrite degradation capacity. PLoS One 9:e113792.   DOI
29 Abbas, T., Zahir, Z. A. and Naveed, M. 2017. Bioherbicidal activity of allelopathic bacteria against weeds associated with wheat and their effects on growth of wheat under axenic conditions. BioControl 62:719-730.   DOI
30 Baltz, R. H. 2016. Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J. Ind. Microbiol. Biotechnol. 43:343-370.   DOI
31 Tang, W. and Eisenbrand, G. 1992. Phellodendron amurense Rupr. In: Chinese drugs of plant origin, eds. by W. Tang and G. Eisenbrand, pp. 759-762. Springer-Verlag, Berlin, Germany.
32 Sorensen, C. K., Thach, T. and Hovmoller, M. S. 2016. Evaluation of spray and point inoculation methods for the phenotyping of Puccinia striiformis on wheat. Plant Dis. 100:1064-1070.   DOI