Browse > Article
http://dx.doi.org/10.7585/kjps.2014.18.4.422

Endophytic bacterium Pseudomonas fluorescens strain EP103 was effective against Phytophthora capsici causing blight in chili pepper  

Kim, Tack-Soo (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
Dutta, Swarnalee (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
Lee, Se Won (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
Park, Kyungseok (Division of Agricultural Microbiology, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
Publication Information
The Korean Journal of Pesticide Science / v.18, no.4, 2014 , pp. 422-428 More about this Journal
Abstract
Endophytic bacterial strains from root tissue of strawberry were screened for their efficacy in growth improvement and control of Phytophthora blight disease of chili pepper plant under greenhouse condition. Plants treated with the strain EP103, identified as Pseudomonas fluorescens, showed growth improvement in terms of fresh weight and root length compared to the untreated control and other endophytic strains. When challenged with Phytophthora capsici, there was significant reduction of disease in EP103 treated plants with an efficacy of 78.7%. There was no direct inhibition of the target pathogen by EP103 when tested under in vitro antibiosis assay. Analysis of differential expression of selected marker genes for induced systemic resistance (ISR) in plants treated with EP103 and challenged with P. capsici showed up-regulation of PR1 and PR10 pathogenesis-related (PR) proteins. PCR analysis showed that EP103 produced secondary metabolites such as pyoluteorin, pyrrolnitrin, hydrogen cyanide and orfamide A. This study indicated the potential of endophytic P. fluorescens strain EP103 as an efficient biocontrol agent against P. capsici in chili pepper plant.
Keywords
Endophyte; ISR; PR-proteins; Pseudomonas fluorescens; secondary metabolites; Phytophthora capsici;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Azevedo, J. L., W. Maccheroni Jr., J. O. Pereira and W. L. de Araujo (2000) Endophytic microorganisms: A review on insect control and recent advances on tropical plants. Electron. J. Biotechnol. Vol. 3, No. 1. Online publication
2 Bhatia, S., R. C. Dubey and D. K. Maheshwari (2005) Enhancement of plant growth and suppression of collar rot of sunflower caused by Sclerotium rolfsii through fluorescent Pseudomonas. Ind. Phytopathol. 58:17-24.
3 Cameron, R. K., N. L. Paiva, C. J. Lamb and R. A. Dixon (1999) Accumulation of salicylic acid and PR-1 gene transcripts in relation to the systemic acquired resistance (SAR) response induced by Pseudomonas syringae pv. tomato in Arabidopsis. Physiol. Mol. Plant Pathol. 55:121-130.   DOI
4 Compant, D., B. Duffy, J. Nowak, C. Clement and E. A. Barka (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.   DOI   ScienceOn
5 De Souza, J. T., D. M. Weller and J. M. Raaijmakers (2003) Frequency, diversity and activity of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species in Dutch take-all decline soils. Phytopathology 93:54-63.   DOI
6 Defago, G. and D. Haas (1990) Pseudomonas as antagonists of soil borne pant pathogens: Modes of action and genetic analysis. In: Soil Biochemistry, Vol. 6; Jeen-Marc Bollag and G. Stotzky (Ed); Marcel Dekker, New York, USA. pp 249-291.
7 Dowling, D. N. and F. O'Gara (1994) Metabolites of Pseudomonas involved in the biocontrol of plant disease. Trends Biotechnol. 12:133-141.   DOI   ScienceOn
8 Dwivedi, D. and B. N. Johri (2003) Antifungals from fluorescent pseudomonads: Biosynthesis and regulation. Curr. Sci. 85:1693-1703.
9 Fu, Z. Q. and X. Dong (2013) Systemic acquired resistance: turning local infection into global defense. Annu. Rev. Plant Biol. 64:839-863.   DOI
10 Germaine, K., E. Keogh, G. Garcia-Cabellos, B. Borremans, D. Van der Lelie, T. Barac, L. Oeyen, J. Vangronsveld, F. P. Moore, E. R. B. Moore, C. D. Campbell, D. Ryan and D. N. Dowling (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 48:109-118.   DOI   ScienceOn
11 Gross, H., V. O. Stockwell, M. D. Henkels, B. Nowak-Thompson, J. E. Loper and W. H. Gerwick (2007) The genomisotopic approach: a systematic method to isolate products of orphan biosynthetic gene clusters. Chem. Biol. 14:53-63.   DOI
12 Hallmann, J., R. Rodriguez-Kabana and J. W. Kloepper (1999) Chitin mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol. Biochem. 31:551-560.   DOI   ScienceOn
13 Hallmann, J., Q. A. Hallmann, W. F. Mahaffee and J. W. Kloepper (1997) Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914.   DOI   ScienceOn
14 Howell, C. R. and R. D. Stipanovic (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69:480-482.   DOI
15 Hurek, T., L. L. Handley, B. Reinhold-Hurek and Y. Piche (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol. Plant-Microbe Interact. 15:233-242.   DOI
16 Iniguez, A. L., Y. Dong and E. W. Triplett (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol. Plant-Microbe Interact. 17:1078-1085.   DOI
17 Lee, S. C. and B. K. Hwang (2005) Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta 221:790-800.   DOI   ScienceOn
18 Kishimoto, K., K. Matsui, R. Ozawa and J. Takabayashi (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46:1093-1102.   DOI   ScienceOn
19 Kraus, J. and J. E. Loper (1995) Characterization of a genomic locus required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 61:849-854.
20 Lanteigne, C., V. J. Gadker, T. Wallon, A. Novinscak and M. Filion (2012) Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Biol. Cont. 102:967-973.
21 Michelsen, C. F. and P. Stougaard (2012) Hydrogen cyanide synthesis and antifungal activity of the biocontrol strain Pseudomonas fluoresscens In5 from Greenland is highly dependent on growth medium. Can. J. Microbiol. 58:383-390.
22 Nielson, T. H. and J. Sorensen (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868.   DOI
23 Nowak, J. and V. Shulaev (2003) Priming for transplant stress resistance in in vitro propagation. In vitro Cell Dev. Biol. Plant. 39:107-124.   DOI
24 Park, C. J., K. J. Kim, R. Shin, J. M. Park, Y. C. Shin and K. H..Paek (2004) Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant J. 37:186-198.   DOI   ScienceOn
25 Ploetz, R., R. J. Schnell and J. Haynes (2002) Variable response of open-pollinated seedling progeny of avocado to Phytophthora root rot. Phytoparasitica 30:262-268.   DOI
26 Persello-Cartieaux, F., L. Nussaume and C. Robaglia (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ. 26:189-199.   DOI   ScienceOn
27 Pieterse C. M. J., S. C. M. Van Wees, J. A. Van Pelt, M. Knoester, R. Laan, H. Gerrits, P. J. Weisbeek and L. C. van Loon (1998) A novel signalling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.   DOI   ScienceOn
28 Pirttila, A. M., P. Joensuu, H. Pospiech, H. J. Jalonen and A. Hohtola (2004) Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiol. Plantarum 121:305-312.   DOI
29 Raaijmakers J. M., I. de Bruijn, O. Nybroe and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol. Rev. 34:1037-1062.   DOI
30 Raaijmakers, J. M., I. De Bruijn and M. J. de Kock (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19:699-710.   DOI
31 Rosenblueth, M. and E. Martinez-Romero (2006) Bacteial endophytes and theri interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837.   DOI   ScienceOn
32 Rosenblueth, M. and E. Martinez-Romero (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch. Microbiol. 181:337-344.   DOI   ScienceOn
33 Sturz, A. and J. Kimpinski (2004) Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root lesion nematodes in the potato root zone. Plant Soil 262:241-249.   DOI
34 Sambrook, J. E., E. F. Fritsch and T. Maniatis (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
35 Sang, M. K., J. G. Kim and K. D. Kim (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774-783.   DOI
36 Seghers, D., L. Wittebolle, E. M. Top, W. Verstraete and S. D. Siciliano (2004) Impact of agricultural practices on the Zea mays L. Endophytic community. Appl. Environ. Microbiol. 70:1475-1482.   DOI   ScienceOn
37 Sturz, A. V., B. R. Christie and J. Nowak (2000) Bacterial endophytes: Potential role in developing sustainable systems of crop production. Crit. Rev. Plant Sci. 19:1-30.   DOI   ScienceOn
38 van Loon, L. C., P. A. H. M. Bakker and C. M. J. Pieterse (1998) Systemic resistance induced by rhizosphere bacteria. Ann. Rev. Phytopathol. 36:453-483.   DOI   ScienceOn
39 Van Wees, S. C., S. Vander Ent and C. M. J. Pieterse, (2008) Plant immune responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-438.   DOI   ScienceOn
40 Wang, Y. Q., Y. Ohara, H. Nakayashiki, Y. Tosha and S. Mayama (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact. 18:385-396.   DOI   ScienceOn
41 Zinniel, D. K., P. Lambrecht, N. B. Harris, Z. Feng, D. Kuczmarski, P. Higley, C. A. Ishmaru, A. Arunakumari, R. G. Barletta and A. K. Vidaver (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68:2198-2208.   DOI   ScienceOn
42 Xie, Y. R., Z. Y. Chen, R. L. Brown and D. Bhatnagar (2010) Expression and functional characterization of two pathogenesis-related protein10 genes from Zea mays. J. Plant Physiol.167:121-130.   DOI
43 Yang, J. W., S. H. Yu and C. M. Ryu (2009) Priming of defense-related genes confers root-colonizing Bacillus-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399.   DOI