• Title/Summary/Keyword: End Bearing

Search Result 430, Processing Time 0.025 seconds

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Application of Smart Base Isolation System for Seismic Response Control of an Arch Structure (아치구조물의 지진응답제어를 위한 스마트 면진시스템의 적용)

  • Kang, Joo-Won;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2011
  • Base isolation system is widely used for reduction of dynamic responses of structures subjected to seismic load. Recently, research on a smart base isolation system that can effectively reduce dynamic responses of the isolated structure without accompanying increases in base drifts has been actively conducted. In this study, a smart base isolation system was applied to an arch structure subjected to seismic excitation and its control performance for reduction of seismic responses was evaluated. In order to make a smart base isolation system, 4kN MR dampers and low damping elastomeric bearings were used. Seismic response control performance of the proposed smart base isolation system was compared to that of the optimally designed lead-rubber bearing(LRB) isolation system. To this end, an artificial ground motion developed based on KBC2009 design response spectrum was used as a seismic excitation. Fuzzy control algorithm was used to control MR damper in the smart base isolation system and multi-objective genetic algorithm was employed to optimize the fuzzy controller. Based on numerical simulation results, it has been shown that the smart base isolation system can drastically reduce base drifts and seismic responses of the example arch structure in comparison with LRB isolation system.

Synthetic Experiment on the Pt-Sb-Bi System: Phase Equilibria and Mineralogical Significance (백금-안티모니-비스머스계의 합성실험적 연구: 상관계 및 광물학적 의의)

  • 김원사
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • Crystallization behavior of platinum minerals within Pt-Sb-Bi bearing ore magmas and mineralogical properties of the existing minerals were investigated at 1,00$0^{\circ}C$ by synthetic experiment. High purity reagents were used as starting materials and silica tubings as containers. Reaction products were analysed by reflecting microscopy, X-ray diffraction, electron probe microanalysis, and micro-hardness test. Stable minerals at 1,00$0^{\circ}C$ are platinum, electron probe microanalysis, and micro-hardness test. Stable minerals at $1,000^{\circ}C$ are platinum, stump-flite (PtSb) and geversite (PtSb2). They are in equilibrium with liquid (ore magma). Platinum contains considerable amount of Sb of 7.5 at.%, whereas Bi only up to 0.9 at.%. Pure stumpflite is hexagonal with space group P63/mmc, and unit cell parameters are a=4.1318(6), c=5.483(1)$\AA$. VHN50=417(2)$\AA$. Geversite has cubic structure with space group Pa3. Cell parameters are a=6.4373(2)$\AA$ and Vicker hardness values VHN50=663.5 (566~766). Both stumpflite and geversite show solid solution and their end-members are Pt48.8Sb40.7-Bi10.5, and Pt33.7-Sb59.8Bi6.5, respectively. Although stumpflite (m.p. $1,043^{\circ}C$) and unnamed PtBi (m.p. 7$65^{\circ}C$) do not form a complete solid solution at $1,000^{\circ}C$, they are known, at $600^{\circ}C$, to form a continuous solid solution. Geversit (m.p. $1,226^{\circ}C$) also forms complete solid solution with insizwaite (m.p. $660^{\circ}C$). Unit cell dimensions of the minerals above increases with the amount of Bi substituting for Sb.

  • PDF

Correction: Ethanolic Extract of Marsdenia condurango Ameliorates Benzo[a]pyrene-induced Lung Cancer of Rats -Condurango Ameliorates BaP-induced Lung Cancer in Rats-

  • Sikdar, Sourav;Mukherjee, Avinaba;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.2
    • /
    • pp.86-87
    • /
    • 2015
  • Objectives: Condurango is widely used in various systems of complementary and alternative medicine (CAM) against oesophageal and stomach ailments including certain types of cancer. However, until now no systematic study has been conducted to verify its efficacy and dose with proper experimental support. Therefore, we examined if ethanolic extract of Condurango could ameliorate benzo[a]pyrene (BaP)-induced lung cancer in rats in vivo to validate its use as a traditional medicine. Methods: After one month of scheduled BaP feeding (50 mg/kg body-weight), lung cancer developed after four months. BaP-intoxicated rats were then treated with Condurango (0.06 mL) twice daily starting at the end of the four months for an additional one, two and three months, respectively. Effects of Condurango were evaluated by analyzing lung histology, reactive oxygen species (ROS) and antioxidant biomarkers, DNA-fragmentation, RT-PCR (Reverese Transcriptase-Polymerase Chain Reaction), ELISA (Enzyme linked immunosorbent assay) and western blot of several apoptotic signalling markers and comparing the results against those obtained for controls. Results: A histological study revealed gradual progress in lung tissue-repair activity in Condurango-fed cancer-bearing rats, showing gradual tissue recovery after three months of drug administration. Condurango has the capacity to generate ROS, which may contribute to a reduction in anti-oxidative activity and to an induction of oxidative stress-mediated cancer-cell death. Condurango-activated pro-apoptotic genes (Bax, caspase-3, caspase-9, p53, cytochrome-c, apaf-1, ICAD and PARP) and down-regulated antiapoptotic-Bcl-2 expression were noted both at mRNA and protein levels. Studies on caspase-3 activation and PARP cleavage by western blot analysis revealed that Condurango induced apoptosis through a caspase-3-dependent pathway. Conclusions: The anticancer efficacy of an ethanolic extract of Condurango for treating BaP-induced lung cancer in rats lends support for its use in various traditional systems of medicine.

Intratumoral Administration of Rhenium-188-Labeled Pullulan Acetate Nanoparticles (PAN) in Mice Bearing CT-26 Cancer Cells for Suppression of Tumor Growth

  • Song, Ho-Chun;Na, Kun;Park, Keun-Hong;Shin, Chan-Ho;Bom, Hee-Seung;Kang, Dong-Min;Kim, Sung-Won;Lee, Eun-Seong;Lee, Don-Haeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1491-1498
    • /
    • 2006
  • The feasibility of pullulan acetate nanoparticles (PAN) with ionic strength (IS) sensitivity as a radioisotope carrier to inhibit tumor growth is demonstrated. PAN was radiolabeled with rhenium 188 (Re-188) without any chelating agents. The labeling efficiency of Re-188 into PAN (Re-188PAN) was $49.3{\pm}4.0%$ as determined by TLC. The tumor volumes of mice treated with 0.45 mCi of Re-188-PAN were measured and compared with that of free Re-188 after 5 days of intratumoral injection. For the histological evaluation of apoptotic nuclei of tumor cells, hematoxylin and eosin (H&E), and terminal deoxynucleotidyl transferase biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) staining were performed. The mean tumor volume of the Re-188-PAN-treated group was decreased by 36% after 5 days, whereas that the free Re-188-treated group was decreased by only 15% (P<0.05). The mean number of TUNEL-positive cells in Re-188-PAN-treated tumors at $144.3{\pm}79.9$ cells/section was significantly greater than the control ($26.7{\pm}7.9$ cells/section, P=0.03). The numbers of leukocyte and lymphocyte were decreased in both free Re-188- and Re-188-PAN-treated mice. These results indicated that the intratumoral injection of Re-188-PAN effectively inhibits the tumor growth by prolonging Re-188 retention time in tumor site induced by the IS sensitivity.

Shear resistance characteristic and ductility of Y-type perfobond rib shear connector

  • Kim, Sang-Hyo;Park, Se-Jun;Heo, Won-Ho;Jung, Chi-Young
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.497-517
    • /
    • 2015
  • This study evaluates behavior of the Y-type perfobond rib shear connector proposed by Kim et al. (2013). In addition, an empirical shear resistance formula is developed based on push-out tests. Various types of the proposed Y-type perfobond rib shear connectors are examined to evaluate the effects of design variables such as concrete strength, number of transverse rebars, and thickness of rib. It is verified that higher concrete strength increases shear resistance but decreases ductility. Placing transverse rebars significantly increases both the shear resistance and ductility. As the thickness of the ribs increases, the shear resistance increases but the ductility decreases. The experimental results indicate that a Y-type perfobond rib shear connector has higher shear resistance and ductility than the conventional stud shear connector. The effects of the end bearing resistance, resistance by transverse rebars, concrete dowel resistance by holes, and concrete dowel resistance by Y-shape ribs on the shear resistance are estimated empirically based on the push-out test results and the additional push-out test results by Kim et al. (2013). An empirical shear resistance formula is suggested to estimate the shear resistance of a Y-type perfobond shear connector for design purposes. The newly developed shear resistance formula is in reasonable agreement with the experimental results because the average ratio of measured shear resistance to estimated shear resistance is 1.024.

A Study on the Load Distribution Ratio and Axial Stiffness on Existing and Reinforcing-Pile in Vertical Extension Remodeling (수직증축시 기존말뚝과 보강말뚝의 하중분담율 및 축강성 분석)

  • Jeong, Sang-Seom;Cho, Hyun-Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.17-30
    • /
    • 2019
  • This study presents the application of the numerical and analytical technique to simulate the Load Distribution Ratio (LDR) and to define axial stiffness on reinforcing pile foundation ($K_{vr}$) in vertical extension remodeling structure. The main objective of this study was to investigate the LDR between existing piles and reinforcing piles. Therefore, to analyze the LDR, 3D FEM analysis was performed as variable for elastic modulus, pile end-bearing condition, raft contacts, and relative position of reinforcing pile in a group. Also, using the axial stiffness ($K_{ve}$) of existing piles, the axial stiffness of reinforcing pile was defined by 3D approximate computer-based method, YSPR (Yonsei Piled Raft). In addition $K_{vr}$ was defined by reducing the $K_{ve}$considering the degradation of the existing piles.

Analysis on the Dynamic Behavior of Breakwater with the DCM Method Using the Shaking Table Test (진동대시험을 이용한 DCM공법에 따른 방파제의 동적거동 분석)

  • Kim, Youngjun;Park, Innjoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.5
    • /
    • pp.25-32
    • /
    • 2022
  • As recently, there have been two earthquakes with a magnitude of 5.0 or greater in Korea and the number of smaller earthquakes has increased, a lot of research and interest in earthquake-resistant design are increasing. Especially, the Pohang earthquake has also raised interest in earthquake-resistant design of port facilities. In this study, experiments and analysis were conducted on the dynamic behavior of upright and inclined breakwaters during earthquakes among port structures through the 1g shaking table test. To this end, three seismic waves were applied to the model to which the similarity law (scale effect) was applied: long period (Hachinohe), short period (Ofunato) and artificial seismic waves. The acceleration and displacement of the upright and inclined breakwaters were analyzed according to whether the DCM method was reinforced during earthquakes based on the results of shaking table test. As the result, the dynamic behavior of the upright and inclined breakwater shows a tendency to suppress the amplification of acceleration as bearing capacity and rigidity increase when DCM method is reinforced.

A simplified model proposal for non-linear analysis of buildings

  • Abdul Rahim Halimi;Kanat Burak Bozdogan
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.353-364
    • /
    • 2023
  • In this study, a method has been proposed for the static and dynamic nonlinear analysis of multi-storey buildings, which takes into account the contribution of axial deformations in vertical load-bearing elements, which are especially important in tall and narrow structures. Shear deformations on the shear walls were also taken into account in the study. The presented method takes into account the effects that are not considered in the fishbone and flexural-shear beam models developed in the literature. In the Fishbone model, only frame systems are modeled. In the flexural shear beam model developed for shear wall systems, shear deformations and axial deformations in the walls are neglected. Unlike the literature, with the model proposed in this study, both shear deformations in the walls and axial deformations in the columns and walls are taken into account. In the proposed model, multi-storey building is represented as a sandwich beam consisting of Timoshenko beams pieced together with a double-hinged beam. At each storey, the total moment capacities of the frame beams and the coupled beams in the coupled shear walls are represented as the equivalent shear capacity. On the other hand, The sums of individual columns and walls moment at the relevant floor level are represented as equivalent moment capacity at that floor level. At the end of the study, examples were solved to show the suitability of the proposed method in this study. The SAP2000 program is employed in analyses. In a conclusion, it is observed that among the solved examples, the proposed sandwich beam model gives good results. As can be seen from these results, it is seen that the presented method, especially in terms of base shear force, gives very close results to the detailed finite element method.

LEU+ loaded APR1400 using accident tolerant fuel cladding for 24-month two-batch fuel management scheme

  • Husam Khalefih;Taesuk Oh;Yunseok Jeong;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2578-2590
    • /
    • 2023
  • In this work, a 24-month two-batch fuel management strategy for the APR1400 using LEU + has been investigated, where enrichments of 5.9 and 5.2 w/o are utilized in lieu of the conventional 4-5 w/o UO2 fuel. In addition, an Accident Tolerant Fuel (ATF) clad based on the swaging technology is applied to APR1400 fuel assemblies. In this special ATF clad design, both outer and inner SS316 layers protect the conventional zircaloy clad. Erbia (Er2O3) is introduced as a burnable absorber with two-fold goals to lower the critical boron concentration in the long-cycle LEU + loaded core as well as to handle the LEU + fuel in the existing front-end fuel facilities without renewing the license. Two types of fuel assemblies with different loading of gadolinia (Gd2O3) are considered to control both the reactivity and the core radial power distribution. The erbia burnable absorber is uniformly admixed with UO2 in all fuel pins except for the gadolinia-bearing ones. In this study, two core designs were devised with different erbia loading, and core performance and safety parameters were evaluated for each case in comparison with a core design without any burnable absorbers. The core analysis was done using the two-step method. First, cross-sections are generated by the SERPENT 2 Monte Carlo code, and the 3-D neutronic analysis is performed with an in-house multi-physics nodal code KANT.