Browse > Article

Intratumoral Administration of Rhenium-188-Labeled Pullulan Acetate Nanoparticles (PAN) in Mice Bearing CT-26 Cancer Cells for Suppression of Tumor Growth  

Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Hospital)
Na, Kun (Division of Biotechnology, The Catholic University of Korea)
Park, Keun-Hong (College of Medicine, Pochon CHA University, Cell and Gene Therapy Research Institute)
Shin, Chan-Ho (Department of Nuclear Medicine, Chonnam National University Hospital)
Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Hospital)
Kang, Dong-Min (Korea Basic Science Institute, Chuncheon Center)
Kim, Sung-Won (Biomedical Research Center, Korea Institute of Science and Technology)
Lee, Eun-Seong (Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah)
Lee, Don-Haeng (Department of Internal Medicine, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.10, 2006 , pp. 1491-1498 More about this Journal
Abstract
The feasibility of pullulan acetate nanoparticles (PAN) with ionic strength (IS) sensitivity as a radioisotope carrier to inhibit tumor growth is demonstrated. PAN was radiolabeled with rhenium 188 (Re-188) without any chelating agents. The labeling efficiency of Re-188 into PAN (Re-188PAN) was $49.3{\pm}4.0%$ as determined by TLC. The tumor volumes of mice treated with 0.45 mCi of Re-188-PAN were measured and compared with that of free Re-188 after 5 days of intratumoral injection. For the histological evaluation of apoptotic nuclei of tumor cells, hematoxylin and eosin (H&E), and terminal deoxynucleotidyl transferase biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) staining were performed. The mean tumor volume of the Re-188-PAN-treated group was decreased by 36% after 5 days, whereas that the free Re-188-treated group was decreased by only 15% (P<0.05). The mean number of TUNEL-positive cells in Re-188-PAN-treated tumors at $144.3{\pm}79.9$ cells/section was significantly greater than the control ($26.7{\pm}7.9$ cells/section, P=0.03). The numbers of leukocyte and lymphocyte were decreased in both free Re-188- and Re-188-PAN-treated mice. These results indicated that the intratumoral injection of Re-188-PAN effectively inhibits the tumor growth by prolonging Re-188 retention time in tumor site induced by the IS sensitivity.
Keywords
Pullulan acetate nanoparticles (PAN); rhenium-188; intratumoral injection; histological evaluation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Cammas, S., K. Suzuki, C. Sone, Y. Sakurai, K. Kataoka, and T. Okano. 1997. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site specific drug carriers. J. Control. Release 48: 157-164   DOI   ScienceOn
2 Chung, J. E., M. Yokoyama, and T. Okano. 2000. Inner core segment design for delivery control of thermo-responsive polymeric micelles. J. Control. Release 65: 93-103   DOI   ScienceOn
3 Jeong, J. M., Y. J. Lee, Y. J. Kim, Y. S. Chang, D. S. Lee, J. K. Chung, et al. 2000. Preparation of rhenium-188-tin colloid as a radiation synovectomy agent and comparison with rhenium-188-sulfur colloid. Appl. Radiat. Isot. 52: 851-855   DOI   ScienceOn
4 Kim, C.-H. 2004. Glycoantigen biosyntheses of human hepatoma and colon cancer cells are dependent on different N-acetylglucosaminyltransferase-III and V activities. J. Microbiol. Biotechnol. 14: 891-900
5 Lee, E. S., K. Na, and Y. H. Bae. 2003. Polymeric micelle for tumor pH and folate mediated targeting. J. Control. Release 91: 103-113   DOI   ScienceOn
6 Liepe, K., J. Kropp, R. Runge, and J. Kotzerke. 2003. Therapeutic efficiency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br. J. Cancer 89: 625-629   DOI   ScienceOn
7 Seo, M. H., J.-H. Lee, M. S. Kim, H. K. Chae, and H. Myung, 2006. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307   과학기술학회마을
8 Shon, Y.-H., K.-S. Nam, and M.-K. Kim, 2004. Cancer chemopreventive potential of Scenedesmus spp. cultured in medium containing bioreacted swine urine. J. Microbiol. Biotechnol. 14: 158-161
9 Suzuki, Y. S., Y. Momose, N. Higashi, A. Shigematsu, K. B. Park, Y. M. Kim, J. R. Kim, and J. M. Ryu. 1998. Biodistribution and kinetics of holmium-166-chitosan complex (DW-166HC) in rats and mice. J. Nucl. Med. 39: 2161-2166
10 Lee, J. D., W. I. Yang, M. G. Lee, Y. H. Ryu, J. H. Park, K. H. Shin, et al. 2002. Effective local control of malignant melanoma by intratumoural injection of a beta-emitting radionuclide. Eur. J. Nucl. Med. Mol. Imaging 29: 221-230   DOI   ScienceOn
11 Na, K., T. B. Lee, K.-H. Park, E.-K. Shin, and H.-K. Choi. 2003. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur. J. Pharm. Sci. 18: 165-173   DOI   ScienceOn
12 Na, K. and Y. H. Bae. 2002. Self-assembled hydrogel nanoparticles responsive to tumor extracelluar pH from hydrophobized pullulan and sulfonamide conjugate; Characterization, aggregation and adriamycin release in vitro. Pharm. Res. 19: 681-688   DOI   ScienceOn
13 Na, K., E. S. Lee, and Y. H. Bae. 2003. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Control. Release 87: 3-13   DOI   ScienceOn
14 Na, K., K. H. Lee, and Y. H. Bae. 2004. pH-Sensitivity and pH-dependent interior structure change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo(methacryloyl sulfadimethoxine) (PA/OSDM) conjugates. J. Control. Release 97: 513-525   DOI
15 Reske, S. N., D. Bunjes, I. Buchmann, U. Seitz, G. Glatting, B. Neumaier, et al. 2001. Targeted bone marrow irradiation in the conditioning of high-risk leukaemia prior to stem cell transplantation. Eur. J. Nucl. Med. 28: 807-815   DOI   ScienceOn
16 Tomayko, M. M. and C. P. Reynolds. 1989. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24: 148-154   DOI
17 Juweid, M., R. M. Sharkey, L. C. Swayne, G. L. Griffiths, R. Dunn, and D. M. Goldenberg. 1998. Pharmacokinetics, dosimetry and toxicity of rhenium-188-labeled anti-carcinoembryonic antigen monoclonal antibody, MN-14, in gastrointestinal cancer. J. Nucl. Med. 39: 34-42
18 Knapp, F. F Jr., A. L. Beets, S. Guhlke, P. O. Zamora, H. Bender, and H. Palmedo. 1997. Availability of rhenium-188 from the alumina-based tungsten-188/rhenium-188 generator for preparation of rhenium-188-labeled radiopharmaceuticals for cancer treatment. Anticancer Res. 17: 1783-1795
19 Crudo, J. L., M. M. Edreira, E. R. Obenaus, M. Chinol, G. Paganelli, and S. G. de Castiglia. 2002. Optimization of antibody labeling with rhenium-188 using a prelabeled $MAG_3$ chelate. Int. J. Pharm. 248: 173-182   DOI   ScienceOn
20 Palmedo, H., S. Guhlke, H. Bender, J. Sartor, G. Schoeneich, and J. Risse. 2000. Dose escalation study with rhenium-188 hydroxyethylidene diphosphonate in prostate cancer patients with osseous metastases. Eur. J. Nucl. Med. 27: 123-130   DOI
21 Tian, J. H., B. X. Xu, J. M. Zhang, B. W. Dong, P. Liang, and X. D. Wang. 1996. Ultrasound-guided internal radiotherapy using yttrium-90-glass microspheres for liver malignancies. J. Nucl. Med. 37: 958-963
22 Seong, S. K., J. M. Ryu, D. H. Shin, E. J. Bae, A. Shigematsu, Y. Hatori, J. Nishigaki, C. Kwak, S. E. Lee, and K. B. Park. 2005. Biodistribution and excretion of radioactivity after the administration of 166Ho-chitosan complex (DW-166HC) into the prostate of rat. Eur. J. Nucl. Med. Mol. Imaging 32: 910-917   DOI
23 Wang, S. J., W. Y. Lin, M. N. Chen, C. S. Chi, J. T. Chen, and W. L. Ho. 1998. Intratumoral injection of rhenium-188 microspheres into an animal model of hepatoma. J. Nucl. Med. 39: 1752-1757
24 Nakajo. M., H. Kobayashi, K. Shimabukuro, K. Shirono, H. Sakata, and M. Taguchi. 1988. Biodistribution and in vivo kinetics of iodine-131 lipiodol infused via the hepatic artery of patients with hepatic cancer. J. Nucl. Med. 29: 1066-1077
25 El-Mabhouh, A. and J. R. Mercer. 2005. 188Re-labeled bisphosphonates as potential bifunctional agents for therapy in patients with bone metastases. Appl. Radiat. Isot. 62: 541-549   DOI   ScienceOn
26 Yuen, S. 1974. Pullulan and its applications. Process Biochem. 9: 7-22
27 Deutsch, E., K. Libson, J. L. Vanderheyden, A. R. Ketring, and H. R. Maxon. 1986. The chemistry of rhenium and technetium as related to use of isotope of these elements in therapeutic and diagnostic nuclear medicine. Int. J. Radiat. Appl. Instrum. B 13: 465-477   DOI   ScienceOn
28 Blower, P. J., A. S. Lam, M. J. O'Doherty, A. G. Kettle, A. J. Coakley, and F. F Jr. Knapp. 1998. Pentavalent rhenium-188 dimercaptosuccinic acid for targeted radiotherapy: Synthesis and preliminary animal and human studies. Eur. J. Nucl. Med. 25: 613-621   DOI
29 Friesen, C., A. Lubatschofski, J. Kotzerke, I. Buchmann, S. N. Reske, and K. M. Debatin. 2003. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells. Eur. J. Nucl. Med. Mol. Imaging 30: 1251-1261   DOI
30 Lee, I. and Y. H. Lee. 1999. The effect of various therapeutic solutions including colloidal chromic $^{32}P$ via an intratumoral injection on the tumor physiological parameters of AsPC-1 human pancreatic tumor xenografts in nude mice. Clin. Cancer Res. 5: 3139-3142
31 Zweit, J. 1996. Radionuclides and carrier molecules for therapy. Phys. Med. Biol. 41: 1905-1914   DOI   ScienceOn
32 Lin, W. Y., S. C. Tsai, J. F. Hsieh, and S. J. Wang. 2000. Effects of $^{90}Y$-microspheres on liver tumors: Comparison of intratumoral injection method and intra-arterial injection method. J. Nucl. Med. 41: 1892-1897