• Title/Summary/Keyword: Encryption & Decryption System

Search Result 200, Processing Time 0.025 seconds

A Digital Right Management System based on Shared Key fool for Video Data Protection (동영상 데이터 보호를 위한 공유 키 풀 기반의 DRM 시스템)

  • Kim Jung-Jae;Park Jae-Pyo;Jun Moon-Seog
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.183-190
    • /
    • 2005
  • In this thesis, first, we propose I-frame encryption techniques of video data for video data itself encryption and propose license agent that processing user's certification and decryption in client system automatically when user execute encrypted video data in system server. License agent runs user's certification, encryption and decryption of video data based on PID(Public Key Infrastructure) using shared key-pool when execute of video data. Also, compose duplex buffer control and propose real time decryption method using efficient buffer scheduling to reduce much playing delay times that happen processing decryption when execute of videoa data of high-capacity.

Optical System Implementation of OFB Block Encryption Algorithm (OFB 블록 암호화 알고리즘의 광학적 시스템 구현)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.328-334
    • /
    • 2014
  • This paper proposes an optical encryption and decryption system for OFB(Output Feedback Block) encryption algorithm. The proposed scheme uses a dual-encoding technique in order to implement optical XOR logic operation. Also, the proposed method provides more enhanced security strength than the conventional electronic OFB method due to the huge security key with 2-dimensional array. Finally, computer simulation results of encryption and decryption are shown to verify the proposed method, and hence the proposed method makes it possible to implement more effective and stronger optical block encryption system with high-speed performance and the benefits of parallelism.

Enhancing Document Security with Computer Generated Hologram Encryption: Comprehensive Solution for Mobile Verification and Offline Decryption

  • Leehwan Hwang;Seunghyun Lee;Jongsung Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.169-175
    • /
    • 2024
  • In this paper, we introduce a novel approach to enhance document security by integrating Computer Generated Hologram(CGH) encryption technology with a system for document encryption, printing, and subsequent verification using a smartphone application. The proposed system enables the encryption of documents using CGH technology and their printing on the edges of the document, simplifying document verification and validation through a smartphone application. Furthermore, the system leverages high-resolution smartphone cameras to perform online verification of the original document and supports offline document decryption, ensuring tamper detection even in environments without internet connectivity. This research contributes to the development of a comprehensive and versatile solution for document security and integrity, with applications in various domains.

Design and Implementation of Image Encryption Method for Multi-Parameter Chaotic System (다중변수 혼돈계를 이용한 이미지 암호화 방법의 설계 및 구현)

  • Yim, Geo-Su
    • Convergence Security Journal
    • /
    • v.8 no.3
    • /
    • pp.57-64
    • /
    • 2008
  • The Security of digital images has become increasingly more important in highly computerized and interconnected world. Therefore, The chaos-based encryption algorithms have suggested some new and efficient ways to develop secure image encryption method. This paper is described for the point at issue in all chaos-based encryption method for distribution of a chaotic signals. It has a method for generation of uniformly distributed chaotic signals that we designed secure algorithm of multi-parameter chaotic systems. So we are present validity of the theoretical models for results of image encryption and decryption for proposed method.

  • PDF

Implementation and Performance Evaluation of Database Encryption for Academic Affairs System (교무업무시스템을 위한 데이터베이스 암호화 구현 및 성능 평가)

  • Kim, Bo-Seon;Hong, Eui-Kyeong
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • Database encryption is one of the important mechanisms for prohibiting internal malicious users and outside hackers from utilizing data. Frequent occurrences of encryption and decryption cause degradation of database performance so that many factors should be considered in implementing encryption system. In this paper, we propose an architecture of database encryption system and data encryption module. In addition we suggest extended SQL in order to manage data encryption and decryption. In implementing database encryption system, we adopt ARIA encryption algorithm which is proved to be the most fast one among Korea standardized encryption algorithm. We use an single key for each database in encrypting data rather than using several keys in order to improve performance. Research over performance evaluation of database encryption system is rare up to now. Based on our implemented system, we provide performance evaluation results over various H/W platforms and compare performance differences between plain text and encrypted data.

  • PDF

Phase-based virtual image encryption and decryption system using Joint Transform Correlator

  • Seo, Dong-Hoan;Cho, Kyu-Bo;Park, Se-Joon;Cho, Woong-Ho;Noh, Duck-Soo;Kim, Soo-Joong
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.450-453
    • /
    • 2002
  • In this paper a Phase-based virtual image encryption and decryption techniques based on a joint transform correlator (JTC) are proposed. In this method, an encrypted image is obtained by multiplying a phase-encoded virtual image that contains no information from the decrypted image with a random phase. Even if this encryption process converts a virtual image into a white-noise-like image, the unauthorized users can permit a counterfeiting of the encrypted image by analyzing the random phase mask using some phase-contrast technique. However, they cannot reconstruct the required image because the virtual image protects the original image from counterfeiting and unauthorized access. The proposed encryption technique does not suffer from strong auto-correlation terms appearing in the output plane. In addition, the reconstructed data can be directly transmitted to a digital system for real-time processing. Based on computer simulations, the proposed encryption technique and decoding system were demonstrated as adequate for optical security applications.

  • PDF

Chaos-based Image Encryption Scheme using Noise-induced Synchronization (잡음으로 동기화 된 혼돈신호를 이용한 이미지 암호화 방법)

  • Yim, Geo-Su;Kim, Hong-Sop
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.155-162
    • /
    • 2008
  • The security of digital image has become increasingly important with the development of the computing performance and internet. Therefore, the encryption algorithms exploiting chaos signal have recently attracted considerable attentions as a new method of image-encryption techniques. In this Paper, it is demonstrated that two different chaotic systems are synchronized by the methods of noise-induced synchronization. Based on this synchronization method, an image-encryption system is implemented and an image of Seok-Ga-Tap is encrypted as a verification of the performance of our system. The method suggested in this paper in which the noise is used as the key of decryption is superior to the existing methods in the aspect of the degree of encryption. In this paper, we Propose that the method is a new effective encryption algorithm as well as an easily applicable one.

  • PDF

De-Centralized Information Flow Control for Cloud Virtual Machines with Blowfish Encryption Algorithm

  • Gurav, Yogesh B.;Patil, Bankat M.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.235-247
    • /
    • 2021
  • Today, the cloud computing has become a major demand of many organizations. The major reason behind this expansion is due to its cloud's sharing infrastructure with higher computing efficiency, lower cost and higher fle3xibility. But, still the security is being a hurdle that blocks the success of the cloud computing platform. Therefore, a novel Multi-tenant Decentralized Information Flow Control (MT-DIFC) model is introduced in this research work. The proposed system will encapsulate four types of entities: (1) The central authority (CA), (2) The encryption proxy (EP), (3) Cloud server CS and (4) Multi-tenant Cloud virtual machines. Our contribution resides within the encryption proxy (EP). Initially, the trust level of all the users within each of the cloud is computed using the proposed two-stage trust computational model, wherein the user is categorized bas primary and secondary users. The primary and secondary users vary based on the application and data owner's preference. Based on the computed trust level, the access privilege is provided to the cloud users. In EP, the cipher text information flow security strategy is implemented using the blowfish encryption model. For the data encryption as well as decryption, the key generation is the crucial as well as the challenging part. In this research work, a new optimal key generation is carried out within the blowfish encryption Algorithm. In the blowfish encryption Algorithm, both the data encryption as well as decryption is accomplishment using the newly proposed optimal key. The proposed optimal key has been selected using a new Self Improved Cat and Mouse Based Optimizer (SI-CMBO), which has been an advanced version of the standard Cat and Mouse Based Optimizer. The proposed model is validated in terms of encryption time, decryption time, KPA attacks as well.

Hierarchical Image Encryption System Using Orthogonal Method (직교성을 이용한 계층적 영상 암호화)

  • Kim, Nam-Jin;Seo, Dong-Hoan;Lee, Sung-Geun;Shin, Chang-Mok;Cho, Kyu-Bo;Kim, Soo-Joong
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.3
    • /
    • pp.231-239
    • /
    • 2006
  • In recent years, a hierarchical security architecture has been widely studied because it can efficiently protect information by allowing an authorized user access to the level of information. However, the conventional hierarchical decryption methods require several decryption keys for the high level information. In this paper, we propose a hierarchical image encryption using random phase masks and Walsh code having orthogonal characteristics. To decrypt the hierarchical level images by only one decryption key, we combine Walsh code into the hierarchical level system. For encryption process, we first perform a Fourier transform for the multiplication results of the original image and the random phase mask, and then expand the transformed pattern to be the same size and shape of Walsh code. The expanded pattern is finally encrypted by multiplying with the Walsh code image and the binary phase mask. We generate several encryption images as the same encryption process. The reconstruction image is detected on a CCD plane by a despread process and Fourier transform for the multiplication result of encryption image and hierarchical decryption keys which are generated by Walsh code and binary random phase image. Computer simulations demonstrate that the proposed technique can decrypt hierarchical information by using only one level decryption key image and it has a good robustness to the data loss such as random cropping.

Dual Optical Encryption for Binary Data and Secret Key Using Phase-shifting Digital Holography

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • In this paper, we propose a new dual optical encryption method for binary data and secret key based on 2-step phase-shifting digital holography for a cryptographic system. Schematically, the proposed optical setup contains two Mach-Zehnder type interferometers. The inner interferometer is used for encrypting the secret key with the common key, while the outer interferometer is used for encrypting the binary data with the same secret key. 2-step phase-shifting digital holograms, which result in the encrypted data, are acquired by moving the PZT mirror with phase step of 0 or ${\pi}/2$ in the reference beam path of the Mach-Zehnder type interferometer. The digital hologram with the encrypted information is a Fourier transform hologram and is recorded on CCD with 256 gray level quantized intensities. Computer experiments show the results to be encryption and decryption carried out with the proposed method. The decryption of binary secret key image and data image is performed successfully.