• Title/Summary/Keyword: Encryption/Decryption

Search Result 490, Processing Time 0.028 seconds

Performance Analysis for Privacy-preserving Data Collection Protocols (개인정보보호를 위한 데이터 수집 프로토콜의 성능 분석)

  • Lee, Jongdeog;Jeong, Myoungin;Yoo, Jincheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1904-1913
    • /
    • 2021
  • With the proliferation of smart phones and the development of IoT technology, it has become possible to collect personal data for public purposes. However, users are afraid of voluntarily providing their private data due to privacy issues. To remedy this problem, mainly three techniques have been studied: data disturbance, traditional encryption, and homomorphic encryption. In this work, we perform simulations to compare them in terms of accuracy, message length, and computation delay. Experiment results show that the data disturbance method is fast and inaccurate while the traditional encryption method is accurate and slow. Similar to traditional encryption algorithms, the homomorphic encryption algorithm is relatively effective in privacy preserving because it allows computing encrypted data without decryption, but it requires high computation costs as well. However, its main cost, arithmetic operations, can be processed in parallel. Also, data analysis using the homomorphic encryption needs to do decryption only once at any number of data.

Outsourcing decryption algorithm of Verifiable transformed ciphertext for data sharing

  • Guangwei Xu;Chen Wang;Shan Li;Xiujin Shi;Xin Luo;Yanglan Gan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.998-1019
    • /
    • 2024
  • Mobile cloud computing is a very attractive service paradigm that outsources users' data computing and storage from mobile devices to cloud data centers. To protect data privacy, users often encrypt their data to ensure data sharing securely before data outsourcing. However, the bilinear and power operations involved in the encryption and decryption computation make it impossible for mobile devices with weak computational power and network transmission capability to correctly obtain decryption results. To this end, this paper proposes an outsourcing decryption algorithm of verifiable transformed ciphertext. First, the algorithm uses the key blinding technique to divide the user's private key into two parts, i.e., the authorization key and the decryption secret key. Then, the cloud data center performs the outsourcing decryption operation of the encrypted data to achieve partial decryption of the encrypted data after obtaining the authorization key and the user's outsourced decryption request. The verifiable random function is used to prevent the semi-trusted cloud data center from not performing the outsourcing decryption operation as required so that the verifiability of the outsourcing decryption is satisfied. Finally, the algorithm uses the authorization period to control the final decryption of the authorized user. Theoretical and experimental analyses show that the proposed algorithm reduces the computational overhead of ciphertext decryption while ensuring the verifiability of outsourcing decryption.

Efficient Certificate-Based Proxy Re-encryption Scheme for Data Sharing in Public Clouds

  • Lu, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2703-2718
    • /
    • 2015
  • Nowadays, public cloud storage is gaining popularity and a growing number of users are beginning to use the public cloud storage for online data storing and sharing. However, how the encrypted data stored in public clouds can be effectively shared becomes a new challenge. Proxy re-encryption is a public-key primitive that can delegate the decryption right from one user to another. In a proxy re-encryption system, a semi-trusted proxy authorized by a data owner is allowed to transform an encrypted data under the data owner's public key into a re-encrypted data under an authorized recipient's public key without seeing the underlying plaintext. Hence, the paradigm of proxy re-encryption provides a promising solution to effectively share encrypted data. In this paper, we propose a new certificate-based proxy re-encryption scheme for encrypted data sharing in public clouds. In the random oracle model, we formally prove that the proposed scheme achieves chosen-ciphertext security. The simulation results show that it is more efficient than the previous certificate-based proxy re-encryption schemes.

Attribute-based Proxy Re-encryption with a Constant Number of Pairing Operations

  • Seo, Hwa-Jeong;Kim, Ho-Won
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 2012
  • Attribute-based encryption (ABE) is an encryption scheme in which the user is able to decrypt a ciphertext with associated attributes. However, the scheme does not offer the capability of decryption to others when the user is offline. For this reason, the attribute-based proxy re-encryption (ABPRE) scheme was proposed, which combines traditional proxy re-encryption with ABE, so a user is able to empower designated users to decrypt the re-encrypted ciphertext with the associated attributes of designated users. However, previous ABPRE schemes demands a number of pairing operations that imply huge computational overhead. To reduce the number of pairing operations, we reduce the pairing operations with exponent operations. This paper provides a novel approach to an ABPRE scheme with constant pairing operation latency.

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

Research on the Image Encryption Method using a Linear-structure Chaos System (선형구조 혼돈계를 이용한 이미지 암호와 방법 연구)

  • Cho, Chang Ho;Yim, Geo Su
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.4
    • /
    • pp.75-79
    • /
    • 2011
  • With the rapid growth of digital communication and the internet, the importance of conducting research on data encryption methods is increasing. Some of the pertinent researches that have been conducted so far introduced data encryption methods using chaos systems, and numerous researches are currently being conducted on such methods. The signals produced by the chaos systems are called "determined noise," and if this is applied to data encryption, very effective results can be obtained. Using the Henon map, the relationship between the non-linearity of the chaos system and the strength of encryption was analyzed, and a linear-structure chaos system that uses non-linearity as a variable for encryption strength was constructed. Using the constructed chaos system, an image was encrypted and decoded, and the correlation coefficient of the linear-structure chaos system's performance was calculated and then analyzed.

Optical Encryption Scheme for Cipher Feedback Block Mode Using Two-step Phase-shifting Interferometry

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • We propose a novel optical encryption scheme for cipher-feedback-block (CFB) mode, capable of encrypting two-dimensional (2D) page data with the use of two-step phase-shifting digital interferometry utilizing orthogonal polarization, in which the CFB algorithm is modified into an optical method to enhance security. The encryption is performed in the Fourier domain to record interferograms on charge-coupled devices (CCD)s with 256 quantized gray levels. A page of plaintext is encrypted into digital interferograms of ciphertexts, which are transmitted over a digital information network and then can be decrypted by digital computation according to the given CFB algorithm. The encryption key used in the decryption procedure and the plaintext are reconstructed by dual phase-shifting interferometry, providing high security in the cryptosystem. Also, each plaintext is sequentially encrypted using different encryption keys. The random-phase mask attached to the plaintext provides resistance against possible attacks. The feasibility and reliability of the proposed CFB method are verified and analyzed with numerical simulations.

A Study on Encrypted Matrix Puzzle for Digital Contents Protection (디지털 컨텐츠 보호를 위한 메트릭스 퍼즐 암호화방법에 대한 연구)

  • Min, So-Yeon;Kim, Jung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.936-944
    • /
    • 2008
  • DRM system is a technology that protects and manages copyright holder's privilege by using a copyright protection technology. This paper contributes to improvement of the secret key transmission and encryption/decryption processing time base on DRM system. In this paper, we will suggest that as follow: First, we will propose the algorithm to transmit the encryption key which use Multidimensional Method more safe than the existing One-path XOR method. Second, we will provide the high quality algorithm of security than the existing system because the Multidimensional which generated from the algorithm does not saved to the server side. Third, we will support the client decryption system which can decrypt the Multidimensional with OPT in decryption with client side. Fourth, we will adopt the more safr method of transmission with the compound of Multidimensional Method and OPT.

A Hardware Design of Ultra-Lightweight Block Cipher Algorithm PRESENT for IoT Applications (IoT 응용을 위한 초경량 블록 암호 알고리듬 PRESENT의 하드웨어 설계)

  • Cho, Wook-Lae;Kim, Ki-Bbeum;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1296-1302
    • /
    • 2016
  • A hardware implementation of ultra-lightweight block cipher algorithm PRESENT that was specified as a block cipher standard for lightweight cryptography ISO/IEC 29192-2 is described in this paper. Two types of crypto-core that support master key size of 80-bit are designed, one is for encryption-only function, and the other is for encryption and decryption functions. The designed PR80 crypto-cores implement the basic cipher mode of operation ECB (electronic code book), and it can process consecutive blocks of plaintext/ciphertext without reloading master key. The PR80 crypto-cores were designed in soft IP with Verilog HDL, and they were verified using Virtex5 FPGA device. The synthesis results using $0.18{\mu}m$ CMOS cell library show that the encryption-only core has 2,990 GE and the encryption/decryption core has 3,687 GE, so they are very suitable for IoT security applications requiring small gate count. The estimated maximum clock frequency is 500 MHz for the encryption-only core and 444 MHz for the encryption/decryption core.

A design of compact and high-performance AES processor using composite field based S-Box and hardware sharing (합성체 기반의 S-Box와 하드웨어 공유를 이용한 저면적/고성능 AES 프로세서 설계)

  • Yang, Hyun-Chang;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.67-74
    • /
    • 2008
  • A compact and high-performance AES(Advanced Encryption Standard) encryption/decryption processor is designed by applying various hardware sharing and optimization techniques. In order to achieve minimized hardware complexity, sharing the S-Boxes for round transformation with the key scheduler, as well as merging and reusing datapaths for encryption and decryption are utilized, thus the area of S-Boxes is reduced by 25%. Also, the S-Boxes which require the largest hardware in AES processor is designed by applying composite field arithmetic on $GF(((2^2)^2)^2)$, thus it further reduces the area of S-Boxes when compared to the design based on $GF(2^8)$ or $GF((2^4)^2)$. By optimizing the operation of the 64-bit round transformation and round key scheduling, the round transformation is processed in 3 clock cycles and an encryption of 128-bit data block is performed in 31 clock cycles. The designed AES processor has about 15,870 gates, and the estimated throughput is 412.9 Mbps at 100 MHz clock frequency.