• Title/Summary/Keyword: Encrypted query processing

Search Result 15, Processing Time 0.025 seconds

Hilbert-curve based Multi-dimensional Indexing Key Generation Scheme and Query Processing Algorithm for Encrypted Databases (암호화 데이터를 위한 힐버트 커브 기반 다차원 색인 키 생성 및 질의처리 알고리즘)

  • Kim, Taehoon;Jang, Miyoung;Chang, Jae-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1182-1188
    • /
    • 2014
  • Recently, the research on database outsourcing has been actively done with the popularity of cloud computing. However, because users' data may contain sensitive personal information, such as health, financial and location information, the data encryption methods have attracted much interest. Existing data encryption schemes process a query without decrypting the encrypted databases in order to support user privacy protection. On the other hand, to efficiently handle the large amount of data in cloud computing, it is necessary to study the distributed index structure. However, existing index structure and query processing algorithms have a limitation that they only consider single-column query processing. In this paper, we propose a grid-based multi column indexing scheme and an encrypted query processing algorithm. In order to support multi-column query processing, the multi-dimensional index keys are generated by using a space decomposition method, i.e. grid index. To support encrypted query processing over encrypted data, we adopt the Hilbert curve when generating a index key. Finally, we prove that the proposed scheme is more efficient than existing scheme for processing the exact and range query.

GOPES: Group Order-Preserving Encryption Scheme Supporting Query Processing over Encrypted Data

  • Lee, Hyunjo;Song, Youngho;Chang, Jae-Woo
    • Journal of Information Processing Systems
    • /
    • v.14 no.5
    • /
    • pp.1087-1101
    • /
    • 2018
  • As cloud computing has become a widespread technology, malicious attackers can obtain the private information of users that has leaked from the service provider in the outsourced databases. To resolve the problem, it is necessary to encrypt the database prior to outsourcing it to the service provider. However, the most existing data encryption schemes cannot process a query without decrypting the encrypted databases. Moreover, because the amount of the data is large, it takes too much time to decrypt all the data. For this, Programmable Order-Preserving Secure Index Scheme (POPIS) was proposed to hide the original data while performing query processing without decryption. However, POPIS is weak to both order matching attacks and data count attacks. To overcome the limitations, we propose a group order-preserving data encryption scheme (GOPES) that can support efficient query processing over the encrypted data. Since GOPES can preserve the order of each data group by generating the signatures of the encrypted data, it can provide a high degree of data privacy protection. Finally, it is shown that GOPES is better than the existing POPIS, with respect to both order matching attacks and data count attacks.

Efficient Top-k Join Processing over Encrypted Data in a Cloud Environment

  • Kim, Jong Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5153-5170
    • /
    • 2016
  • The benefit of the scalability and flexibility inherent in cloud computing motivates clients to upload data and computation to public cloud servers. Because data is placed on public clouds, which are very likely to reside outside of the trusted domain of clients, this strategy introduces concerns regarding the security of sensitive client data. Thus, to provide sufficient security for the data stored in the cloud, it is essential to encrypt sensitive data before the data are uploaded onto cloud servers. Although data encryption is considered the most effective solution for protecting sensitive data from unauthorized users, it imposes a significant amount of overhead during the query processing phase, due to the limitations of directly executing operations against encrypted data. Recently, substantial research work that addresses the execution of SQL queries against encrypted data has been conducted. However, there has been little research on top-k join query processing over encrypted data within the cloud computing environments. In this paper, we develop an efficient algorithm that processes a top-k join query against encrypted cloud data. The proposed top-k join processing algorithm is, at an early phase, able to prune unpromising data sets which are guaranteed not to produce top-k highest scores. The experiment results show that the proposed approach provides significant performance gains over the naive solution.

kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns (데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘)

  • Kim, Hyeong-Il;Kim, Hyeong-Jin;Shin, Youngsung;Chang, Jae-woo
    • Journal of KIISE
    • /
    • v.43 no.12
    • /
    • pp.1437-1457
    • /
    • 2016
  • In outsourced databases, the cloud provides an authorized user with querying services on the outsourced database. However, sensitive data, such as financial or medical records, should be encrypted before being outsourced to the cloud. Meanwhile, k-Nearest Neighbor (kNN) query is the typical query type which is widely used in many fields and the result of the kNN query is closely related to the interest and preference of the user. Therefore, studies on secure kNN query processing algorithms that preserve both the data privacy and the query privacy have been proposed. However, existing algorithms either suffer from high computation cost or leak data access patterns because retrieved index nodes and query results are disclosed. To solve these problems, in this paper we propose a new kNN query processing algorithm on the encrypted database. Our algorithm preserves both data privacy and query privacy. It also hides data access patterns while supporting efficient query processing. To achieve this, we devise an encrypted index search scheme which can perform data filtering without revealing data access patterns. Through the performance analysis, we verify that our proposed algorithm shows better performance than the existing algorithms in terms of query processing times.

Secure Query Processing against Encrypted XML Data Using Query-Aware Decryption (질의-인식 복호화를 사용한 암호화된 XML데이타에 대한 안전한 질의 처리)

  • Lee Jae-Gil;Whang Kyu-Young
    • Journal of KIISE:Databases
    • /
    • v.32 no.3
    • /
    • pp.243-253
    • /
    • 2005
  • Dissemination of XML data on the internet could breach the privacy of data providers unless access to the disseminated XML data is carefully controlled. Recently, the methods using encryption have been proposed for such access control. However, in these methods, the performance of processing queries has not been addressed. A query processor cannot identify the contents of encrypted XML data unless the data are decrypted. This limitation incurs overhead of decrypting the parts of the XML data that would not contribute to the query result. In this paper, we propose the notion of query-aware decryption for efficient processing of queries against encrypted XML data. Query-aware decryption allows us to decrypt only those parts that would contribute to the query result. For this purpose, we disseminate an encrypted XML index along with the encrypted XML data. This index, when decrypted, informs us where the query results are located in the encrypted XML data, thus preventing unnecessary decryption for other parts of the data. Since the size of this index is much smaller than that of the encrypted XML data, the cost of decrypting this index is negligible compared with that for unnecessary decryption of the data itself. The experimental results show that our method improves the performance of query processing by up to 6 times compared with those of existing methods. Finally, we formally prove that dissemination of the encrypted XML index does not compromise security.

QSDB: An Encrypted Database Model for Privacy-Preserving in Cloud Computing

  • Liu, Guoxiu;Yang, Geng;Wang, Haiwei;Dai, Hua;Zhou, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.3375-3400
    • /
    • 2018
  • With the advent of database-as-a-service (DAAS) and cloud computing, more and more data owners are motivated to outsource their data to cloud database in consideration of convenience and cost. However, it has become a challenging work to provide security to database as service model in cloud computing, because adversaries may try to gain access to sensitive data, and curious or malicious administrators may capture and leak data. In order to realize privacy preservation, sensitive data should be encrypted before outsourcing. In this paper, we present a secure and practical system over encrypted cloud data, called QSDB (queryable and secure database), which simultaneously supports SQL query operations. The proposed system can store and process the floating point numbers without compromising the security of data. To balance tradeoff between data privacy protection and query processing efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is to process as much queries as possible at the cloud server. Encryption of queries and decryption of encrypted queries results are performed at client. Experiments on the real-world data sets were conducted to demonstrate the efficiency and practicality of the proposed system.

An Efficient Top-k Query Processing Algorithm over Encrypted Outsourced-Data in the Cloud (아웃소싱 암호화 데이터에 대한 효율적인 Top-k 질의 처리 알고리즘)

  • Kim, Jong Wook;Suh, Young-Kyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.12
    • /
    • pp.543-548
    • /
    • 2015
  • Recently top-k query processing has been extremely important along with the explosion of data produced by a variety of applications. Top-k queries return the best k results ordered by a user-provided monotone scoring function. As cloud computing service has been getting more popular than ever, a hot attention has been paid to cloud-based data outsourcing in which clients' data are stored and managed by the cloud. The cloud-based data outsourcing, though, exposes a critical secuity concern of sensitive data, resulting in the misuse of unauthorized users. Hence it is essential to encrypt sensitive data before outsourcing the data to the cloud. However, there has been little attention to efficient top-k processing on the encrypted cloud data. In this paper we propose a novel top-k processing algorithm that can efficiently process a large amount of encrypted data in the cloud. The main idea of the algorithm is to prune unpromising intermediate results at the early phase without decrypting the encrypted data by leveraging an order-preserving encrypted technique. Experiment results show that the proposed top-k processing algorithm significantly reduces the overhead of client systems from 10X to 10000X.

A K-Nearest Neighbour Query Processing Algorithm for Encrypted Spatial Data in Road Network (도로 네트워크 환경에서 암호화된 공간데이터를 위한 K-최근접점 질의 처리 알고리즘)

  • Jang, Mi-Young;Chang, Jae-Woo
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.67-81
    • /
    • 2012
  • Due to the recent advancement of cloud computing, the research on database outsourcing has been actively done. Moreover, the number of users who utilize Location-based Services(LBS) has been increasing with the development in w ireless communication technology and mobile devices. Therefore, LBS providers attempt to outsource their spatial database to service provider, in order to reduce costs for data storage and management. However, because unauthorized access to sensitive data is possible in spatial database outsourcing, it is necessary to study on the preservation of a user's privacy. Thus, we, in this paper, propose a spatial data encryption scheme to produce outsourced database from an original database. We also propose a k-Nearest Neighbor(k-NN) query processing algorithm that efficiently performs k-NN by using the outsourced database. Finally, we show from performance analysis that our algorithm outperforms the existing one.

Efficient Top-K Queries Computation for Encrypted Data in the Cloud (클라우드 환경에서의 암호화 데이터에 대한 효율적인 Top-K 질의 수행 기법)

  • Kim, Jong Wook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.915-924
    • /
    • 2015
  • With growing popularity of cloud computing services, users can more easily manage massive amount of data by outsourcing them to the cloud, or more efficiently analyse large amount of data by leveraging IT infrastructure provided by the cloud. This, however, brings the security concerns of sensitive data. To provide data security, it is essential to encrypt sensitive data before uploading it to cloud computing services. Although data encryption helps provide data security, it negatively affects the performance of massive data analytics because it forbids the use of index and mathematical operation on encrypted data. Thus, in this paper, we propose a novel algorithm which enables to efficiently process a large amount of encrypted data. In particular, we propose a novel top-k processing algorithm on the massive amount of encrypted data in the cloud computing environments, and verify the performance of the proposed approach with real data experiments.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.