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Abstract 
 

The benefit of the scalability and flexibility inherent in cloud computing motivates clients to 

upload data and computation to public cloud servers. Because data is placed on public clouds, 
which are very likely to reside outside of the trusted domain of clients, this strategy introduces 

concerns regarding the security of sensitive client data. Thus, to provide sufficient security for 

the data stored in the cloud, it is essential to encrypt sensitive data before the data are uploaded 
onto cloud servers. Although data encryption is considered the most effective solution for 

protecting sensitive data from unauthorized users, it imposes a significant amount of overhead 

during the query processing phase, due to the limitations of directly executing operations 
against encrypted data. Recently, substantial research work that addresses the execution of 

SQL queries against encrypted data has been conducted. However, there has been little 

research on top-k join query processing over encrypted data within the cloud computing 

environments. In this paper, we develop an efficient algorithm that processes a top-k join 
query against encrypted cloud data. The proposed top-k join processing algorithm is, at an 

early phase, able to prune unpromising data sets which are guaranteed not to produce top-k 

highest scores. The experiment results show that the proposed approach provides significant 
performance gains over the naive solution. 
 

 

Keywords:  Cloud computing, top-k join query processing, database encryption, ranking, 

efficiency, rank join 
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1. Introduction 

In recent years, top-k join queries have received much attention, largely due to the vast 

increases in data set sizes produced by a variety of applications, such as bioinformatics, 

e-commerce, and social media. Top-k join queries return the most interesting k tuples to the 
user, thereby resulting in manageable sizes of the result sets. The result sets are ordered by a 

user-provided preference criterion, which is expressed by a monotonic score function.  The 

properties of monotone ranking functions of top-k queries enable efficient query processing by 

eliminating unpromising data sets that are not expected to produce the top-k highest scores at 
an early phase. 

 As cloud computing service is getting more attention these days, the interest in cloud-based 
data outsourcing, in which customers' data are remotely stored and managed by the public 

cloud, such as Amazon EC2 [3] and Microsoft Azure [4], has correspondingly increased. 

Cloud-based data outsourcing solutions have a great advantage in that they offer the data 
owner a low initial investment, scalability, and flexibility. However, they pose many security 

challenges, because the users' sensitive data are stored within the public cloud servers, which 

are very likely to reside outside of the trusted domain of the users. Hence, in order to protect 
sensitive data from unauthorized access, it is essential to encrypt sensitive information, such as 

financial information and health records, before such data is uploaded into the cloud servers. 

For example, in recent years, personal health record (PHR) systems, such as Microsoft 
HealthVault [33], store PHRs electronically within a cloud database. As proposed in [34, 35], 

to protect the patients’ ownership of their own PHRs,  sensitive data should be encrypted 

before outsourcing it to the cloud.  

Data encryption is generally considered the most effective solution for protecting sensitive 
data from unauthorized users. However, data encryption imposes a significant amount of 

overhead during the query processing phase, mainly due to the limitation of directly executing 
operations over encrypted data. That is, in order to process a user query against encrypted data, 

it is necessary to transfer a large amount of data from the cloud to the client, decrypt the data 

and execute the query against the decrypted data. This naive solution is intuitive and straight 
forward; however, it is clearly impractical, due to the potentially very large costs incurred by 

the transfer of a large data set from the cloud to the client, followed by decryption before 

finally performing client-side query processing against the decrypted data. 

Recently, substantial research work has been conducted into the possibility of directly 

executing SQL queries against encrypted data [5, 6, 7, 8, 9, 10]. However, little research has 
addressed top-k join query processing against encrypted data within the cloud computing 

environments. Indeed, the problem caused by encrypted data becomes more serious when 

considering top-k join queries. This is because users are often interested in focusing on a small 
number of top results generated from execution of the top-k join query, rather than browsing 

the entire result set. Thus, the naïve approach, which transfers the entire data set from the 

cloud to the client, is highly inefficient. In this paper, we investigate an algorithm which aims 

to support efficient top-k join query processing against encrypted cloud data. 
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1.1 Problem Definition and Naive Solution 

Fig. 1 illustrates the system architecture used in this paper. Data is outsourced to the cloud 
servers, which might be curious about the stored data, but honestly execute the tasks assigned 

and return task results honestly (i.e., honest-but-curious model). We also assume that a data 

owner encrypts the sensitive data and stores the encrypted data within the cloud servers. Users 

submit a ranked query against the outsourced data in the cloud from a client machine with 
limited computational resources. Let us assume that the outsourced data is stored in a raw table 

data within a distributed file system, such as HDFS (Hadoop Distributed File System). We, 

further, assume that each table Rp consists of a set of sensitive (and thus encrypted) attributes 
Sp and a set of non-sensitive attributes Np. To facilitate understanding of the notation used in 

the paper, a notation table is provided in Table 1. In this paper, we focus on ranked (top-k) 

equi-join queries that can be written as follows: 
 

SELECT     select-list 

FROM     R1, R2, …, Rn 

WHERE     equi-join-condition (R1, R2, …, Rn) 
ORDER BY      f (e1∈S1, e2∈S2 , …, en∈Sn) 

STOP AFTER   k 

 

Here, as is common in existing top-k join works, f (·) is a monotonic score function. Note that 

in this paper, we assume that the input values of a score function are encrypted data. A naïve 

solution to handle such a top-k join query over encrypted and outsourced data is summarized 
as follows (Fig. 2): 
 

1. Client side: As previously described, a top-k join query ranks the results based on a 

specified score function and returns the best k results to the user. However, if the input 
values of the score function are encrypted data, performing such an operation on the 

cloud side is not possible. Therefore, upon receiving the top-k join query, the client 

machine rewrites it as follows: 
 

SELECT     select-list, e1, e2, …, en 

                  FROM     R1, R2, …, Rn 

WHERE     equi-join-condition (R1, R2, …, Rn) 

 
That is, since it is not possible to compute the values of the score function, f (e1, e2, …, 

en) on the cloud side due to encrypted data, the client machine rewrites the top-k join 

query as an equi-join query that is executable by the cloud servers. We also note that 
the cloud servers must send the encrypted values, e1, e2, …, en, to the client (by their 

inclusion within the select list) so that the values of the score function, f (e1, e2, …, en), 

can be computed on the client side by decrypting the values of e1, e2, …, en. 

 
2. Cloud side: The cloud servers execute the above equi-join query on encrypted data, 

and send the results to the client system. 

 
3. Client side: Upon receiving the results from the cloud, the client machine first 

decrypts the values of  e1, e2, …, en, computes the values of the score function, ranks 

the results based on the score values, and returns the best k results to the user. 
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Obviously, this naive solution of downloading all equi-join results from the cloud and 

performing the remaining client-side query processing, including decrypting encrypted data, is 
highly inefficient due to the large amount of bandwidth and client-side workload. Furthermore, 

considering that users are interested in only the best k results, the cloud-side query processing 

wastes the system resources to produce intermediate results, most of which are likely to be not 

in the top-k.  

 

Fig. 1. A system architecture assumed in this paper 

 

 

 
Fig. 2. A naïve solution to process a top-k join query over encrypted cloud data 
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Table 1.  Notation table 

Notation Definition 

Rp A relation p 

Sp A set of sensitive attributes of Rp 

Np A set of non-sensitive attributes of R 

Rp,i   The i-th segment for a relation Rp 

fp,i The counting Bloom filter for the i-th segment Rp,i 

fp,i[r] The  r-th bit of the counting Bloom filter  fp,i 

1.2 Our Contribution 

To address the performance problems inherent in processing a top-k join query against 

encrypted cloud data, we propose a novel top-k join query processing algorithm which 
efficiently computes the best k results against encrypted cloud data. The algorithm presented 

in this paper is able to identify and eliminate join results that are guaranteed not to produce the 

top-k highest scores at the cloud servers. In particular, 

- we first develop a method for effectively estimating the portion of the join space (i.e., the 
top-k candidate space) which will produce the best k results by leveraging an 
order-preserving encryption technique in conjunction with the use of a counting Bloom 

filter, and  

- we then present a top-k join processing algorithm on encrypted cloud data, based on the 
top-k candidate space identification scheme. 

The rest of this paper is structured as follows: In the next section, we present the related work. 
In Section 3, we present the proposed algorithm for efficiently processing top-k join queries 

against encrypted data stored within the cloud servers. In Section 4, we experimentally 
evaluate the proposed approach and in Section 5, we conclude the paper. 

2. Related Work 

Threshold algorithm (TA) is the most popular method for top-k queries [1,  2, 11, 12]. Given M 

sorted-lists, TA algorithm assumes that each object has a single score in each list and an 

aggregation function, which combines independent object’s scores in each list, is monotone. 
Many variants of TA algorithm have been proposed in the literature. An approximate-based 

algorithm [13, 14] leverages the probabilistic model in order to terminate earlier than the 

original TA algorithm. With the development of web, there have been studies to determine the 
ranking of objects based on the score of text data which are related with the specific objects 

[15, 16]. Ntarmos et al. [17] introduced algorithms for top-k joins in cloud NoSQL databases, 

such as BigTable, HBase, Cassandra, etc. Doulkeridis et al. [18] proposed efficient processing 

of top-k joins in a distributed setup where servers store fragments of relations individually. Yu 
et al. [19] introduced an algorithm for top-k queries over batch-oriented data sets in cloud 

computing environments. Although there has been substantial research conducted to address 

the processing of top-k queries, they are not applicable to the problem discussed in this paper, 
due to their failure to support encrypted data. 

There have been proposals to execute SQL queries against encrypted data. Hacigumus et al. 
[7] proposed an early approach, which partially executes an SQL query at the server and 

performs final query processing on the client side. Agrawal et al. [5] proposed an order 
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preserving encryption scheme (OPES) by which some SQL query types can be directly 

handled via ciphertext (without decryption). Ge et al. [6] conducted a comprehensive study of 
computing SUM and AVG function values included within aggregation queries by using 

partially homomorphic encryption schemes. CryptDB [8] is a well-known system for 

processing SQL queries against encrypted data. CryptDB uses multiple data encryption 

schemes, such as order-preserving encryption and partially homomorphic encryption, and 
dynamically adjusts the layer of encryption on the DBMS server. MONOMI [9] is built on 

CryptDB’s design of using multiple data encryption functions. In order to provide efficient 

analytical query processing, this algorithm uses a split client/server query execution approach 
which intelligently partitions the execution of each query across an untrusted server and a 

trusted client machine. 

Many security-related issues have been studied in the areas of cloud computing and Internet 
of Things (IoT) literature. Han et al. proposed the multi-valued and ambiguous scheme to 

provide data confidentiality in data communication between the cloud and wireless body area 
networks [20]. Liang et al. introduced a ciphertext-policy attribute-based re-encryption 

scheme which relies on the PRE technology in the attribute-based encryption cryptographic 

setting for secure cloud storage data sharing [21]. In [22], the authors presented the 
cloud-centric, multi-level authentication method as a service to provide a secure 

communication between IoT devices and the cloud. Xu et al. investigated the secure 

transmission problem in the IoT with unknown eavesdroppers [23].   

Another work that is related to this paper is the resource allocation problem within distributed 
environments, including cloud computing platforms. Wei et al. presented a cloud resource 
allocation model, which is based on an imperfect information Stackelberg game [24]. Shojafar 

et al. investigated the resource management problem for real-time vehicular cloud services 

[25]. [26, 27] proposed methods, which attempt to minimize the overall energy consumed in 
typical distributed data centers. [28, 29] presented an energy-efficient algorithm that solves the 

coverage problem of associating a wireless network with the minimum number of sensor 

nodes. The problem studied in this paper is different from the above references, in that this 

paper focuses on developing a methodology for efficiently processing top-k join queries 
against encrypted cloud data. 

3. Efficient Top-k Join Processing over Encrypted Data 

In this section, we describe the proposed algorithm for efficiently computing top-k join query 

results against encrypted cloud data. 

3.1 Preliminary: Order-Preserving Encryption 

Order-preserving encryption (OPE) guarantees that the order of encrypted data is identical to 

the order of original data, and thus allows comparison operations to be directly applied to 
encrypted data without decrypting it [5, 30]. In other words, any two unencrypted values x and 

y such that x > y map to corresponding encrypted values such that OPE(x) > OPE(y). OPE has 

recently received increased interest from the database community, because the database 
system can still leverage an existing index structure, such as a B

+
-tree, indexed on the 

encrypted values, to efficiently process equality and range queries. Similarly, ORDER BY, 

MAX, and MIN operations can be directly applied to the encrypted data. 

In this work, we rely on OPE to encrypt sensitive data to protect the data from unauthorized 
access, while preserving numerical ordering of plaintext. This is useful in that it provides the 
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capability to prune unpromising data sets that are guaranteed not to produce the top-k highest 

scores at the cloud servers, thereby alleviating the overhead of the client machine. 

3.2 Identifying Top-k Candidate Space 

Before explaining the proposed algorithm in detail, we first give an intuitive example in Fig. 3. 

Let us consider a two-way top-k join query of two relations, R1 and R2. Then, Fig. 3-(a) 
graphically represents the join space between two relations in which the area containing the 

blue rectangles holds the top-k results. Here, the X-axis represents the sensitive attribute,  

e1(∈ S1), of R1, sorted from left to right by increasing values of e1 (the Y-axis is similarly 
defined). The properties of the monotonic ranking function guarantee that the top-k results are 

located at the upper-right corner of this join space. Hence, if we effectively identify that 

portion of the join space that will contain the top-k results by leveraging the monotonic 
property of a score function, then we can significantly speed up the top-k join processing by 

not processing data points that will not contribute to the k highest scores. Based on this 

intuition, we now explain how to effectively estimate the portion of the join space which will 

produce the top-k results (hereafter we call this portion of the join space the top-k candidate 
space). The proposed approach is summarized as follows:  

 

1. The entire join space is partitioned into multiple subspaces and the join cardinality for 
each subspace is computed  

2. The top-k candidate space is estimated based on the join cardinalities.  

 
We now explain and describe each of these steps in detail. 

 

 

 
 

Fig. 3. (a) The monotonic property of a score function guarantees that the top-k results are found at the 

upper-right corner, and (b) increasing the proximity of the boundaries (reducing segment size) of the 

segments that are nearer to the higher end of the value spectrum assists to more accurately estimate the 

top-k candidate space. 
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3.2.1 Computing Join Cardinality 

Given the number of partitions, each relation can be partitioned into multiple segments in 

many different ways: the simplest strategy being an equi-width partitioning. However, if we 

consider that the top-k results would be found at the higher end of the value spectrum due to 

the monotonic property of a score function, it is easy to see that an equi-width partitioning is 
not likely to provide the best estimate of the top-k candidate space. Instead, increasing the 

proximity of the boundaries (reducing segment size) of the segments that are nearer to the 

higher end of the value spectrum will improve the accuracy of the estimate of the top-k 
candidate space (Fig. 3-(b)).  

Let us consider that given a relation Rp, each tuple, t, in Rp has an associated value, t.ep ∈ 

[minep , maxep ]. Let us further assume that minep = bp,0 < bp,1 < … < bp,m-1 < bp,m  =  maxep are 
the boundaries used for partitioning Rp into m segments. Here, to ensure smaller segments 

nearer to the higher end of the value spectrum, the partition boundaries are subject to the 

following constraints: 
 

∀1≤i≤m-1 α × (bp,i - bp,i-1)=(bp,i+1 - bp,i)  and  α ≥ 1. 
 

Here, α = 1 is an equi-width partitioning scheme, while α > 1 ensures the segments closer to 

the top-k candidate space are smaller than the others (i.e., non equi-width partitioning). 

Let Rp,i =(bp,i-1, bp,i] be the i-th segment for a relation Rp. Given a top-k join query, let    jp∈ 

Np be the join attribute of a relation Rp. Then, we build the counting Bloom filter, fp,i, for the 

i-th segment Rp,i=(bp,i-1, bp,i] as follows: 
 

1. Let Dp be the set of all distinct values that appear in Rp within the join attribute jp. If a 

top-k join query involves n relations (i.e., R1, R2, … , Rn), a set of all distinct values 
that appear within the n join attributes (i.e., j1, j2, …, jn), each from a different relation, 

is defined as D = D1 ∪ D2 ∪ … ∪ Dn. Then, the number of bits in the counting 

Bloom filter is set to |D|. 

2. Let h(∙) be a one-to-one function that maps each value in D to a value in  [1, |D|].  Then, 

the  r-th bit,  fp,i[r], of the counting Bloom filter  fp,i  is set to the number of tuples, t ∈ 
Rp, that satisfy the following condition: 

(h(t.jp) = r) ∧ (bp,i-1 < t.ep  ≤ bp,i) 

That is, given a segment, the corresponding counting Bloom filter is constructed by 

counting the number of tuples which belong to that segment. 
 

Example 1. Let us consider two relations, R1 and R2, and the top-k join query shown in Fig. 

4-(a). Let us assume that the possible maximum and minimum values of R1.e1 (and R2.e2)  are 
0 and 0.9 respectively. Let us further assume that the partition boundaries of R1.e1 are b1,0=0, 

b1,1=0.3, b1,2=0.6, and b1,3=0.9 (i.e., α = 1 and m=3). Similarly, the partition boundaries of R2.e2 

are b2,0=0, b2,1=0.3, b2,2=0.6, and b2,3=0.9.  
Since two relations are joined by R1.ID1=R2.ID2, the join attribute j1 and j2 correspond to ID1 

and ID2 respectively. Then, D= {1,2,3,4}, because of D1 = {1,3,4} and D2 = {2,3,4}, Thus, the 

number of bits in the counting Bloom filter is set to 4 (= |D|) . 

Let h(·) be a one-to-one function such that h(1)=1, h(2)=2, h(3)=3, and h(4)=4. Then, the 

counting Bloom filters for R1 are constructed as follows: 

 f1,1 = 1010,       f1,2 = 0001,      f1,3 = 0012.  
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Similarly, the counting Bloom filters for R2 are built as follows: 

 
f2,1 = 0000,       f2,2 = 0102,      f2,3 = 0020.  

 

Each counting Bloom filter can be further compressed using various compression techniques, 

such as Word-Aligned Hybrid (WAH) compression [31]. We note that the counting Bloom 
filters are constructed based on plaintexts by the client machine and are stored within the 

database of the client system for later use (as shown in Fig. 7). Thus, the construction of the 

counting Bloom filter incurs a one-time cost for the given sensitive attribute and join attribute. 
Assume that the join subspace consists of n segments, R1,u1, R2,u2, …,Rn,un, each from a 

different relation in R = {R1, R2, , … , Rn}. The join cardinality of this subspace is computed 

using the corresponding counting Bloom filters, f1,u1, f2,u2, …, fn,un, as follows: 
 

JC(R1,u1, R2,u2, …, Rn,un ) = 
 ||1 Di

(f1,u1[i] ×  f2,u2[i] × … ×  fn,un [i]) 

Note that the presented method in this subsection is able to compute the exact join cardinality 

for an equi-join from a set of relations. 
 

Example 2. Let us continue to consider the example in Fig. 4-(a). Once the counting Bloom 

filters are constructed as described in Example 1, the join cardinality of each subspace can be 
computed as shown in Fig. 4-(b). For instance, the join cardinality associated with R1,3 and R2,2 

is computed as followings: 

 

JC(R1,3, R2,2) = 
 41 i

(f1,3[i] ×  f2,2[i] )=0× 0+0× 1+1× 0+2× 2=4. 

 

 

 
 

Fig. 4. (a) Two relations, R1 and R2,  and a top-k join query,  

and (b) the corresponding join cardinality of each join subspace. 

 

 



5162                                                                        Kim : Efficient Top-k Join Processing over Encrypted Data in a Cloud Environment 

3.2.2 Estimating Top-k Candidate Space 

Fig. 5 describes the pseudo-code that estimates the top-k candidate space of a given top-k join 

query. The algorithm first initializes the set of segments (which corresponds to the top-k  

candidate space), Setcand, and the cut off score, mink. The algorithm enumerates all possible 

join subspaces (Setjoin_subspace), which are then sorted in descending order (Listmax) by maximum 
value that those join spaces can have (line 2-3). Here, given a join subspace consisting of n 

segments, R1,u1= (b1,u1-1, b1,u1],  R2,u2 =(b2,u2-1, b2,u2],  …,  Rn,un  = (bn,un-1, bn,un ], and a score 

function, f (∙), of the given top-k join query, the minimum and maximum values that a join 

result, belonging to this join subspace, can have are computed as followings: 

 
min = f (b1,u1-1, b2,u2-1, …, bn,un-1), 

 

max = f (b1,u1, b2,u2, …, bn,un ). 
 

Each join subspace in Listmax is visited sequentially and added into Setcand, until we find k join 

results (line 4-9). Here, the algorithm computes the number of join results of a given join 

subspace by using the counting Bloom filters presented in Subsection 3.2.1 (line 5). Note that 
the cut off score, mink, is set to the minimum value that the join subspaces in Setcand can assume 

(line 8). For the k join results already identified within the join subspaces in Setcand, we can 

safely prune those join subspaces that possess a maximum value that is less than the cut off 
score, mink (line 10-12). Finally, the algorithm returns Setcand which contains the top-k 

candidate space. 

 
 

 
Fig. 5. Pseudo-code for estimating the top-k candidate space 
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Fig. 6. (a) An example top-k join query and the corresponding join cardinalities of join subspaces, and 

(b) estimates of the corresponding top-k candidate space. 
 

Example 3. Let us consider the example top-k join query and the corresponding join 

cardinalities in Fig. 6-(a). The table in Fig. 6-(b) lists join subspaces with the possible 
maximum and minimum scores that a join result, which belongs to each join subspace, can 

have (Here, the score function is defined as the sum of e1 and e2). Furthermore, the join 

subspaces are sorted based on the maximum scores (Listmax in the algorithm). Then, lines 4-9 
of the algorithm perform a sequential scan of the join subspaces in Listmax until k = 3 join 

results are found. Because the join cardinality of the first join subspace (which corresponds to 

R1,8 and R2,8) in Listmax is greater than 3, by line 9 of the algorithm, the iteration stops after 

adding the first join subspace to Setcand and setting mink to 1.4 (which is the minimum score of 
the first join subspace). Then, by line 10-12, the algorithm finds and adds those join spaces 

whose maximum score is greater than or equal to mink into Setcand. As a result, the join 

subspaces corresponding to (R1,7, R2,8), (R1,8,  R2,7), (R1,6, R2,8), (R1,7, R2,7), and (R1,8, R2,6) are 
added into Setcand. This is performed because a join result belonging to these subspaces might 

possess a better score than mink. Therefore, the top-k candidate space consists of (R1,8, R2,8), 

(R1,7, R2,8), (R1,8,  R2,7), (R1,6, R2,8), (R1,7, R2,7), and (R1,8, R2,6), which are highlighted as red in 
the figure. 

3.3 Top-k Join Processing with the Top-k Candidate Space 

Fig. 7 is an overview of the proposed top-k join processing algorithm on encrypted cloud data, 
based on the above top-k candidata sapce identification scheme: 
 

1.  Client side: Given a user’s top-k join query, the client machine first estimates the 

top-k candidate space, Setcand, as explained within Subsection 3.2. Given the top-k 
candidate space Setcand, let [b1,min, b2,min, …, bn,min] be lower bounds of this space. Here, 

bp,min   corresponds to the lower bound of the segments of a relation Rp which belong 

to Setcand. For instance, the lower bounds of the top-k candidate space in the example 

presented in Fig. 6 are [0.5, 0.5]. Then, the user’s top-k join query is rewritten by the 
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client system as follows: 

 
SELECT     select-list, e1, e2, …, en 

                  FROM     R1, R2, …, Rn 

WHERE     equi-join-condition(R1, R2, …, Rn) 

AND                e1 ≥ OPE(b1,min) 
AND                e2 ≥ OPE(b2,min) 

AND                ……… 

  AND                en ≥ OPE(bn,min) 
 

Here, OPE(∙) is the order-preserving encryption function used to encrypt the sensitive 

data stored in the cloud servers. For example, the example top-k join query in Fig. 6 is 

rewritten as follows: 

 
SELECT     R1.ID1, (e1+e2), e1, e2 

                  FROM     R1, R2 

WHERE     R1.ID1 = R2.ID2 

AND                 e1 ≥ OPE(0.5) 
AND                 e2 ≥ OPE(0.5) 

 

In other words, unlike the naive method in Section 3, the proposed scheme rewrites a 

given top-k join query such that unpromising tuples in each relation, which are 
guaranteed not to produce the top-k highest scores, are pruned by using a set of range 

predicates. We also note that since sensitive data stored in the cloud servers are 

encrypted by using the same order preserving encryption function, the range operation 
in the rewritten query can be directly applied to the encrypted data without decrypting 

it. 

2. Cloud side: The cloud servers process the rewritten query on encrypted data, and send 

back the results to the client system. Once again, we note that unlike the naive 
approach, the cloud servers need to compute equi-join results that belong to the top-k 

candidate space.  

3. Client side: After receiving the results from the cloud servers, the client machine 
decrypts the encrypted data, e1, e2, e3, …, en, ranks the results based on the given score 

function, and returns the best k results to the user. 

 
 

Unlike the naive solution in Subsection 1.1, the proposed approach improves the performance 
of the top-k join processing as follows: First, by effectively estimating the top-k candidate 

space that contains the best k results, the cloud servers are able to prune unpromising tuples 

that are known to produce non-qualifying top-k highest scores at an early phase. This yields a 
reduction in execution time at the cloud server. More importantly, with the proposed scheme, 

the cloud servers compute and return only the equi-join results, all of which belong to the top-k 

candidate space, to the client. Thus, there is a significant reduction in the client-side query 

processing time, due to a reduction in the amount of data decryption and results ranking. 
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Fig. 7. An overview of the proposed top-k join processing approach.  

 

Unlike the naïve approach, the proposed approach restricts the computation of the equi-join 

results to those that belong to the top-k candidate space. 

4. Experimental Evaluations 

In this section, we experimentally evaluate the performance of the proposed approach. First 

we describe the experimental setup and then we will discuss the results. 

4.1 Experimental Setup 

In order to evaluate the proposed approach, we used LINEITEM and PARTSUPP relations 
from the TPC-H benchmark [32]. The LINEITEM relation contains 6M tuples, and the 

PARTSUPP relation contains 0.8M tuples respectively. In the experiments, we focused on the 

two-way (which is the most common type of join) top-k join query over these two relations. 
We report results for the proposed approach (Pruning) in Section 3 with varying values of α as 

well as results from the naive approach (Naive) in Subsection 1.1. In support of the proposed 

approach, we built, for each relation, 100 counting Bloom filters as explained in Subsection 

3.2. 
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4.2 Results and Discussion 

   Table 2 shows the number of tuples which belong to the top-k candidate space for each 
relation for varying values of k. Here, k varies from 100 to 100000. This experiment evaluates 

the first step of the proposed algorithm as described in Subsection 3.3. Recall that the first step 

of the proposed approach is to rewrite a given top-k join query into an equi-join query that can 

be executable against the encrypted data by the cloud servers. However, unlike the naïve 
approach, the proposed approach can prune those tuples in each relation that do not belong to 

the top-k candidate space by using a set of range predicates. As can be seen in the table, for 

each relation, the number of tuples which belong to the top-k candidate space decreases, as k 
decreases. Thus, as the value of k decreases, more tuples are pruned at an early phase. Table 2  

also illustrates a performance comparison between an equi-width partitioning (α=1) 

specification and a non equi-width partitioning (α > 1) specification. As can be seen in the 
table, a non equi-width partitioning approach can prune more tuples than an equi-width 

partitioning scheme. This validates the assertion that the top-k candidate space is more 

accurately estimated by increasing the proximity of the boundaries (reducing segment size) of 

the segments that are nearer to the higher end of the value spectrum. 
 

Table 2. The number of tuples which belong to the top-k candidate space as a function of k 

LINEITEM relation (#tuple = 6M) 

 k=100 k=1000 k=10000 k=100000 

Pruning (α=1.00) 7769 22941 106980 425357 

Pruning (α=1.10) 2549 11340 68863 366672 

 
PARTSUPP relation (#tuple = 0.8M) 

 k=100 k=1000 k=10000 k=100000 

Pruning (α=1.00) 47940 71866 127994 224272 

Pruning (α=1.10) 30165 55349 107858 210886 

 

Next, we evaluate the second step of the Naive and Pruning approaches. Table 3 shows the 

number of join results that are produced by executing the rewritten query at the cloud servers. 
Note that the join results produced by the cloud servers must be sent back to the client so that 

the client-side query processing can be completed. This client-side query processing includes 

decryption of data, computing the value of the score function and ranking the results based on 
the given score function. Hence, a lower number of join results produced by the cloud servers 

will yield better performance. As can be seen from the table, the behavior of the proposed 

top-k join processing scheme is such that the number of results that are produced by the cloud 

servers is significantly reduced. This will also reduce the processing overhead requirements of 
the client machine. 

 
 

Table 3. The number of join results produced by the cloud servers on varying k 

 k=100 k=1000 k=10000 k=100000 

Naive 24000000 24000000 24000000 24000000 

Pruning (α=1.00) 1851 8282 68712 478391 

Pruning (α=1.10) 402 3090 37037 388100 
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Fig. 8 shows the execution times for processing the rewritten query against encrypted data 

by the cloud servers. In this experiment, we used a cluster consisting of 6 Amazon EC2 nodes 
in which the rewritten query is executed by Hadoop MapReduce jobs. As can be seen in Fig. 8 

the proposed scheme significantly outperforms the naive solution as measured by execution 

time. This is because the proposed top-k join processing scheme prunes those tuples that are 

known to produce non-qualifying top-k highest scores at an early phase by using a set of range 
predicates, which leads to reduced execution times at the cloud servers. 

 

 
Fig. 8. The execution times for running the rewritten query over encrypted data at the cloud servers 

 

We also study the impact of α on the number of results produced by the cloud servers. In 

this experiment, α varies in the range of 1.10, 1.15 and 1.20 while k varies from 100 to 100000. 

As shown in Table 4, when k is small, a slightly better result is observed with a higher value of 
α. On the other hand, when k is large, better results are obtained with a lower value of α. These 

experimental results imply that a lower value of α is suitable when the number of results 

returned to users is large (k = 10000, 100000), while a higher value of α is appropriate for the 
case when the number of results returned to users tends to be small (k = 100, 1000). 

 
Table 4.  The impact of α on the number of join results produced by the cloud  servers 

 k=100 k=1000 k=10000 k=100000 

Pruning (α=1.10) 402 3090 37037 388100 

Pruning (α=1.15) 369 2858 43844 412442 

Pruning (α=1.20) 337 2442 46606 473339 

 

   Finally, Fig. 9 compares the execution times of the third step of the Naive and Pruning 

schemes, as the number of results returned to the user (k) varies from 100 to 100000. Note that 
after receiving the join results from the cloud servers, the client machine must perform the 

remaining client-side query processing, i.e. result data decryption, results ranking  based on 

the given score function, and returning the best k results to the user. We considered a scenario 
where the client machine has 3.0 GHz of CPU and 8GB of memory. Fig. 9 indicates that as the 

number of results returned to the user decreases, the execution times of the proposed scheme 
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decrease. The reason for this is that with the proposed top-k join processing scheme, more join 

results are pruned at the cloud side, thereby reducing the number of results returned to the user. 
As can be seen in the figure, the proposed scheme (Pruning) outperforms the naive solution 

(Naïve) in the third step. This is because the proposed top-k join processing scheme prunes 

unpromising join results at the cloud side. This results in a reduction in the overhead resource 

requirements of the client side. The proposed scheme significantly outperforms the naive 
solution when the number of results returned to the user is small. Considering that in many 

applications the value of k is typically small, our experimental results are very encouraging.  

 
 

 
Fig. 9. The execution times of performing client-side query processing for Naive and Pruning schemes 

5. Conclusion 

Within the cloud computing environment, data encryption is considered the most effective 

solution for protecting sensitive data from unauthorized users. However, data encryption 

imposes a significant amount of overhead during query processing, due to the limitation of 
directly executing operations over encrypted data. The problem caused by encrypted data 

becomes more serious when considering top-k join queries. In this case, users are often 

interested in a small number of top results that are produced via the top-k join query, rather 
than the entire result set. Thus, the naive solution which transfers the entire data set from the 

cloud to the client is highly inefficient. In this paper, we proposed a novel top-k join processing 

algorithm on the massive amount of encrypted data in the cloud computing environments. The 

algorithm presented in this paper prunes join results which are guaranteed not to produce the 
top-k highest scores at the cloud servers. The experiment results validated that the proposed 

technique provides significant performance gains over the naive solution. 
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