
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, Jul. 2018 3375
Copyright ⓒ 2018 KSII

QSDB: An Encrypted Database Model for
Privacy-Preserving in Cloud Computing

Guoxiu Liu1,2, Geng Yang1,3, Haiwei Wang1, Hua Dai1 and Qiang Zhou2

1School of Computer Science and Technology, Nanjing University of Posts and Telecommunications

Nanjing 210003, China

[e-mail: liuxiu.03@163.com]
2 School of Computer and Information Engineering, Chuzhou University

Chuzhou 239000, China

[e-mail: liuxiu.03@163.com]
3 Jiangsu High Technology Research Key Lab for Wireless Sensor Networks

Nanjing 210003, China

[e-mail: liuxiu.03@163.com]

*Corresponding author: Geng Yang

Received April 25, 2017; revised October 20, 2017; revised December 9, 2017; accepted February 28, 2018;

published July 31, 2018

Abstract

With the advent of database-as-a-service (DAAS) and cloud computing, more and more data
owners are motivated to outsource their data to cloud database in consideration of
convenience and cost. However, it has become a challenging work to provide security to
database as service model in cloud computing, because adversaries may try to gain access to
sensitive data, and curious or malicious administrators may capture and leak data. In order to
realize privacy preservation, sensitive data should be encrypted before outsourcing. In this
paper, we present a secure and practical system over encrypted cloud data, called QSDB
(queryable and secure database), which simultaneously supports SQL query operations. The
proposed system can store and process the floating point numbers without compromising the
security of data. To balance tradeoff between data privacy protection and query processing
efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is
to process as much queries as possible at the cloud server. Encryption of queries and
decryption of encrypted queries results are performed at client. Experiments on the
real-world data sets were conducted to demonstrate the efficiency and practicality of the
proposed system.

http://doi.org/10.3837/tiis.2018.07.021 ISSN : 1976-7277

mailto:liuxiu.03@163.com

3376 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Keywords: privacy-preserving; SQL query; encryption model; cloud computing; DAAS

1. Introduction

 With the introduction of remote storage and cloud computing services, more and more

companies are offering outsourced services based on databases [1,2], as witnessed by
Amazon’s RDS (relational database service) and Microsoft’s SQL Azure. Today, many
enterprises and end users may outsource their data to those cloud service providers for lower
cost and better performance. In fact, a number of database systems on the cloud have been
developed recently, which offer high availability and flexibility at relatively low costs.
However, an adversary can exploit the vulnerability of software to gain access to sensitive
information; curious or malicious administrators at those cloud service providers can snoop
on private data and leak data. Undoubtedly, security and privacy of data are main concerns.
To minimize the risk of data leakage, one approach to address these concerns is that the data
owners opt to encrypt their sensitive data before outsourcing to the cloud database. However,
encrypted data also brings significant difficulties in executing SQL and computing over
these data. For example, encrypted data loses its original order without set of primitive
operators, such as equality checks, order comparisons, aggregates (sums), and joins. It is
obviously impractical to download encrypted data from cloud database and decrypt locally.

To date, researchers have designed theoretical solutions with fully homomorphic
encryption [3] to address the above problem. However, because of expensive computational
overhead, fully homomorphic encryption schemes are not practical for either cloud database
providers or users. On the contrary, CryptDB’s approach is to protect private data and
support efficiently SQL query over encrypted data, and the key insight that makes it practical
is that SQL uses a well-defined set of operators [4,5].

In an e-heathcare cloud system, the personal health data (e.g., blood glucose, insulin, and
C-peptide levels) always contain real numbers, which are sent to the cloud database for
storage and processing. However, CryptDB protects only integer values and computations on
integers, which affects the accuracy of data and decision making results, and it may even
lead to wrong diagnosis of a patient’s illness. Moreover, CryptDB implemented certain
operations by using user-defined functions (UDFs), which is not suitable in some cases. For
example, user has no permission to create UDFs in the cloud database, and CryptDB uses
mOPE (mutable order-preserving encoding) to support order operations. Although mOPE
has ideal security, the interaction and tree balancing will affect its efficiency.

The objective of this paper is to design an efficient system called QSDB to address the
issues mentioned above, which makes tradeoff between security, privacy and practicality.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3377

We propose a new encryption model to implement the direct addition, multiplication, order
comparison and equality without using user-defined functions. Therefore, QSDB can support
floating point numbers calculation without compromising the privacy of sensitive data.
Moreover, the frequent interactive communication between the cloud server and the client is
not required. Once user issues a floating point calculation request, the client just encrypts the
sensitive data, sends the query, and waits for the results from cloud server.

The rest of this paper is organized as follows. Related works is discussed in Section 2.
Section 3 gives a brief introduction of the system and attack model. Section 4 presents the
encryption model. Section 5 describes how the SQL query works. Section 6 gives security
analysis. Section 7 presents the experiments and performance analysis. And Section 8 covers
the conclusion.

2. Related Works

Search and queries over encrypted data. The problem of processing queries for the
outsourced database is not new. The seminal paper [8] proposed executing SQL query over
encrypted data by using bucketization. Since then, a number of techniques related to
practical query processing over encrypted data have been proposed, including keyword
search queries [9-14] and range queries [15-17]. CryptDB was the first system that can
execute the SQL queries over encryption data [5]. Based on CryptDB, Tu designed and
implemented a database encryption system that can divide task [18]. Surprisingly, to the best
of our knowledge, none of the existing works can solve the SQL query over encrypted
Database in Cloud Computing in a secure and efficient manner.

Privacy-preserving. Techniques used to protect sensitive data allow SQL query on
encrypted data to be processed just like on plaintext. These methods can provide security by
using order-preserving [19], which allows order-relation data items to be established based
on their encrypted values without revealing the data itself, and it adopts efficient
homomorphic encryption [7]. There are also some other related privacy-preserving methods
proposed to ensure security in database [21–23].
Databases as service. There is an increasing interest in database-as-a-service in the cloud
[4,20]. Based on the idea, we designed QSDB.

3. System and Encryption Model

3.1 System model

Fig. 1 describes the overall architecture. The trusted client receives queries from
applications(1), and transforms the queries(2); it sends the queries to the untrusted cloud
server(3), receives results (consisting of encrypted data)(4), decrypts the results by using
corresponding keys, and sends the decrypted result to the applications(5). To balance

3378 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

tradeoff between data privacy protection and query processing efficiency, QSDB utilizes
three different encryption models to encrypt data.

The system model in this paper involves two different entities: trusted client and untrusted
cloud server.

Fig. 1. QSDB architecture

Trusted client. In this system model, trusted client encrypts all data and stores encrypted

data at the cloud server. Trusted client also translates the user SQL query to appropriate
representation at the cloud server, and performs post-processing of cloud server query results.
Its key components contain:

1. Rewriting SQL Query: Applications pose SQL query to the client, and it can parse the
SQL statements and analyze the types of queries. Analytic functions should encrypt plaintext
data and modify the name of column in the SQL statements according to types of queries,
such as to create, select, insert, update, and delete. To illustrate how to rewrite a SQL query,
consider the query select name from student, where id = 1, and the rewritten query is select
name_EEM from student, where id_EEM = ‘Edaf···df’, column name_EEM corresponds to
name, column id_EEM corresponds to id, and ‘Ed···f’ is the EEM (Equivalent encryption
model) inner encryption of 1.

2. Encryption And Decryption Engine: Through three encryption models (such as
equivalent encryption model, order-preserving encryption model, and homomorphic
encryption model), the encryption engine encrypts plaintext data from applications. And the
decryption engine decrypts the query results from the cloud server.

3. Keys Manager: There are two challenges in managing the keys. First of all, the keys
manager should dynamically generate work keys for the equivalent encryption model. The
second challenge is to obtain a key from the metadata table that combines metadata
management for order-preserving encryption model and homomorphic encryption model.

4. Database Connectivity: The main function of database connectivity is responsible of
connecting to the cloud database. And it can connect to different cloud databases.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3379

5. Metadata Manager: Metadata Manager provides the data storage and access
capabilities, which stores the attribute information of plaintext and the keys of
order-preserving encryption model and homomorphic encryption model in metadata tables.

Untrusted cloud server. In this system model, an untrusted cloud server is hosted by the
service provider who stores the encrypted database. The encrypted database is augmented
with additional information which allows certain amount of query processing to occur at the
cloud server without jeopardizing data privacy.

1. Metadata tables: Metadata tables store the attribute information of plaintext and the
keys of order-preserving encryption model and homomorphic encryption model. For
example, the structure of a metadata table is as shown in Table 1. The metadata table stores
the information of table M1. Table M1 consists of three columns--column C1, column C2
and column C3, the types of columns are int, double and char respectively, and the names
and types of columns are without encryption. For numeric data, the metadata tables store the
keys of order-preserving encryption model and homomorphic encryption model, but for
character data, the two columns are set to null. To protect the information of metadata tables,
we encrypt the metadata tables with EEM.

2. Ciphertext data tables: Ciphertext data tables store encrypted data.

Table 1. The structure of a metadata table

Table Column Type OEM Key HEM Key
M1 C1 int *** ***
M1 C2 double *** ***
M1 C3 char null null

 In our system, another challenge is to minimize the amount of confidential information

revealed to the cloud server. To protect data privacy, sensitive data has to be encrypted
before outsourcing. The simple and popular solutions adopted for data privacy are traditional
encryption techniques, such as public key encryption and symmetric key encryption.
However, traditional database encryption will destroy the data structure of original data, and
it cannot support various kinds of SQL operations. We use three encryption models to
encrypt privacy data, which can guarantee the security of the system, and also execute SQL
query over encrypted database.

A practical QSDB should be efficient and provably secure, and it has the following
challenges:

(1) Traditional encryption scheme can only encrypt positive integers and zero over a finite
field. Therefore, QSDB can encrypt the floating point numbers without compromising the
privacy of sensitive data.

(2)The SQL query can be processed over the encrypted data.
(3)In order to support processing of SQL query, the basic operations (e.g. addition,

3380 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

multiplication, and comparison) on ciphertext need to be constructed.

3.2 Attack model

Our model consists of a trusted client and an untrusted cloud server that interact with each
other. The client encrypts the floating point numbers, and the server performs the SQL query
over the encrypted data. We consider two types of attackers:

(1) Adversaries can access the database, which can see encrypted data and database
structure, and launch ciphertext-only attack.

(2) Adversaries have more knowledge to guess the encryption details. In order to guess the
encryption private key, they will try to launch chosen-plaintext attack.

 In practical applications, the first type of adversaries is considered as the main threat.
Because it is easy for curious adversary to obtain the ciphertext stored in cloud database, it is
much harder to get the encryption private key in the cloud database environment. Therefore,
the security against the ciphertext-only attack is our basic and practical security goal.

4. Encryption Model

In our system, we design the single-layer encryption and two-layer encryption models, and
the main purpose of our design is to protect data privacy and enhance the efficiency of query
processing. Let us describe the encryption models that QSDB uses, including equivalent
encryption model, order-preserving encryption model, and homomorphic encryption model,
as shown in Fig. 2. For each encryption model, we explain the security property that QSDB
requires from it, its functionality, and how it is implemented.

outer layer : randomized encryption

inner layer: deterministic encryption order-preserving
encryption Homomorphic encryption

Equivalent encryption model Order-preserving encryption model Homomorphic
encryption model

Fig. 2. Encryption Model

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3381

4.1 Equivalent encryption model (EEM)

Equivalent encryption model uses two layers of encryption: the outer layer is randomized
encryption, and inner layer is deterministic encryption. In efficient construction of
randomized encryption, a block cipher is used, such as AES with a random variable (salt).
Salt, which is used by each data, consists of three parts: master key, column name and row
identifier. The master key is a unique key for each user. The row identifier is used to indicate
the current number of rows, and this value is not repeatable. Column name is a plaintext
column name, which cannot be obtained directly from the database. Salt is generated by the
client, and it is not saved in database. Deterministic encryption has a slightly weaker
guarantee, yet it allows the cloud server to perform selects with equality predicates, equality
JOINS, GROUP BY, COUNT, DISTINCT, etc.

To implement different levels of security strength and computational support, each value
in the table is dressed in layer of deterministic encryption as the inner layer, and then, the
inner layer is dressed in layer of randomized encryption as the outermost layer, as shown in
Fig. 2. As the client receives SQL query from applications, it determines whether the layers
of encryption need to be removed. The data maintains two encrypted states if selects are
without equality predicates; otherwise, the client strips off the outermost layer to allow
executing SQL query by sending corresponding outermost layer key to the cloud server.
After SQL queries are completed, the inner layer can be re-encrypted immediately back to
the outermost layer, and the data maintains the safest state. This property ensures that the
QSDB’s security risks problem can be solved.

In our design, deterministic encryption uses a block cipher like AES with ECB mode.
Master key and column name dynamically generate its key, and a trusted client uses the
same key for encrypting values in the same column. We propose the brand new idea for
generating keys, and the keys don’t need to be saved. For example, for user’s master key and
column c, the client uses the key:

 , , (,),=mk c tK f MasterKey mk Column c (1)

where f is a pseudorandom permutation function. Then, QSDB can perform eq-joins with the
same key.

4.2 Order-preserving encryption model (OEM)

Order-preserving encryption model uses single-layer encryption, and it encrypts the floating
point numbers through order-preserving encryption. The model is used for numeric data
encryption, and it supports range queries over encrypted data. In this strategy, we implement
the nonlinear guaranteed order indexing scheme [19] proposed by Liu D. in 2013. Given the
sensitivity sens of input values v, an order-preserving encryption scheme is a function F:

 [, ,] () () ,= × × + +sens
a b fnindex v a f v v b noise (2)

3382 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

where noise is sampled from the range [0, a*f(v+sens)*(v+sens) - a*f(v)*v], a>0; v denotes
numeric plaintext and belongs to plaintext space; f(v) is a nonlinear function about v, f(v)>0
for v ≠ 0, f(v1)≥f(v2) for v1 > v2 ≥ 0 or v1 < v2 ≤ 0, and f(v), a, b are keys. The scheme
shows that the indexing process is irreversible. And this scheme not only keeps the order
information in the plaintext, but has also overcome the security vulnerabilities of the linear
order preserving indexing scheme proposed in 2012. Therefore, the model can ensure the
security of the plaintext data, perform SQL queries over encrypted data directly and reduce
the computation cost.

4.3 Homomorphic encryption model (HEM)

Homomorphic encryption model uses single-layer encryption, which adopts homomorphic
encryption to encrypt the floating point numbers. Homomorphic encryption is a specially
designed encryption scheme that allows direct computation over encrypted data and provides
maximum security. To support SUM, AVG and multiplication query, we implemented D.
Liu’s cryptosystem [7]. The encryption scheme is designed with the following form, where
Enc is the encryption algorithm of the encryption scheme,

 1(, ()) (,...,),= nEnc v k n c c (3)

v is a floating point numbers to be encrypted, n is the number of sub-ciphertexts, and k(n) is
the key. The right side of the equation is the ciphertext, representing the plaintext after the
encryption generated n sub-ciphertexts.

The sub-ciphertexts satisfy the following equation:

 ((),) ((),),= +i i ic Value k n v Noise k n R (4)

where Valuei(k(n),v) is a i th function over k(n) and v, and Noisei(k(n),R) is a i th function
over k(n) and R. Valuei(k(n),v) and Noisei(k(n),R) may have a linear time complexity with
respect to n.

The decryption algorithm is defined as:

1((), (,...,)) .=nDec k n c c v

HEM supports homomorphic addition and homomorphic multiplication. Without
definition of special functions, the encryption algorithm can significantly reduce
computation cost and perform aggregations on floating point values.

5. Executing SQL Query Over Encrypted Database

The client receives SQL query from applications, and it translates the SQL query. Next, we
describe how QSDB supports SQL query over encrypted data. QSDB enables the cloud
server to execute SQL query on encrypted data almost as if it were executing the same

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3383

queries on plaintext data, such as table creation (create), insertion (insert), selection (select),
updating (update) and deletion (delete). Existing applications do not need to be changed.

5.1 Basic SQL operations

For basic data operations (create, insert, select, update and delete), the QSDB replaces the
plaintext with corresponding ciphertext encrypted by EEM, OEM and HEM. In other words,
data is encrypted by using various encryption models to support different types of operations.
At this point, the cloud server can learn nothing about the data other than the number of
columns, rows, and data size. Following are some other notations.
COL – The columns, namely, the set of columns, denoted as COL={col1,col2,…,coln}.
COLID – COLID stores the identity of a column.
num – The number of columns.

5.1.1 Table creation

To illustrate how to translate encrypted SQL operations with three encryption models,
consider the SQL operation create table table1 (column_1 numeric, column_2 char), where
the data type of column column_1 is numeric, and the column column_1 is extended to
column column_1_EEM, column column_1_OEM and column column_1_HEM. The values
of column column_1_EEM, column_1_OEM and column_1_ HEM are encrypted by EEM,
OEM and HEM respectively. The data type of column column_2 is char, which is encrypted
by EEM, and corresponding column name is column_2_EEM (see Fig. 3). We describe the
detailed table creation process in Table 2.

Fig. 3. When the application creates the table, the client uses different encryption model according

to data type

3384 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Table 2. Algorithm for Table creation

1: The client receives a create statement from a user, parses the create statement, obtains
table_name, column_name, value_type, and stores these data in cloud database.

COL = {col1, col2, …, coln} with the identifiers COLID = {COLID|COLID = 1, 2, …, n}.
2: for each column COLID in COL do
 if data type is numeric then
 column_name is extended to column_EEM, column_OEM, and column_HEM;
 EEM(column_EEM) and set value_type to text;
 OEM(column_OEM) and set value_type to double;
 HEM(column_HEM) and set value_type to double;
 else
 if data type is char then
 set column_name to column_EEM;
 EEM(column_EEM) and set value_type to text;
 increase a row identifier as a primary key;
 end if
 end if
 end for
3: return the rewritten create statement.

5.1.2 Insertion

If the application issues the query insert into table1(column_1, column_2) values(value_1,
value_2), where the data type of column column_1 is numeric, and the value_1 is encrypted
by EEM, OEM and HEM respectively. The data type of column column_2 is char, and the
value_2 is encrypted by EEM (see Fig. 4). Note that the client must request the data types of
columns and encryption keys from a metadata table according to corresponding table name.
Fig. 5 describes the detailed flow of inserting process, and we present the detailed inserting
process in Table 3.

Fig. 4. The encrypted values layout at the cloud database, ciphertexts shown are not full-length

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3385

Fig. 5. The detailed flow of inserting process

Table 3. Algorithm for Insertion

1: The client receives an insert statement from a user, parses the insert statement, obtains
table_name, column_name, and value.

COL = {col1, col2, …, coln} with the identifiers COLID = {COLID|COLID = 1, 2, …, n}, num
= 0;

2: obtains the column’s data type from the cloud database according to the table_name;
3: for each column COLID in COL do
 if data type is numeric then
 column_name is extended to column_EEM, column_OEM, and column_HEM;
 EEM(value) and the value is value_EEM after encrption;
 OEM(value) and the value is value_OEM after encrption;
 HEM(value) and the value is value_ HEM after encrption;
 num++;
 else
 if data type is char then
 set column_name to column_EEM;
 EEM(value) and the value is value_EEM after encrption;
 num++;
 end if
 end if
 end for
4: return the rewritten insert statement;
5: for i = 1,…,num do
 EEM_OUTER(value_EEM) with key generation according to the user’s master key, the

column name and unique row identifier;
 end for

3386 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

5.1.3 Selection

If the next SQL operation is select column_1 from table1 where column_2 = ‘value_2’, it
requires lowering the encryption of column_2 to inner layer. To execute this operation, the
client first requests the data types of columns and encryption keys from a metadata table
according to corresponding table name, and decrypts the outer layer using the key, which is
based on the user's master key; a column name and a row identifier are generated, and a row
identifier is unique, column_2_inner = DEC_EEMOUTER(Ki,j,l), where i is user's master key,
j is column_2 name, and l is row identifier. The client then issues the query select
column_1_EEM from table1 where column_2_inner = value_2_inner, where value_2_inner
is the EEM inner encryption of “value_2” with key Kmk,c,t. Finally, the client decrypts the
result from the cloud server by using keys Kmk,c,t and Ki,j,l, obtains the result value_1, and
returns it to the application. Fig. 6 presents the detailed flow of selecting process, and Table
4 describes the detailed selecting process.

Fig. 6. The detailed flow of selecting process

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3387

Table 4. Algorithm for Selection

1: The client receives a select statement from a user, parses the select statement, obtains
table_name, column_name or SUM(column1_name) or AVG(column1_name), condition predicate
P;

2: obtains the column’s data type and key from the cloud database according to the table name;
3: DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master

key, the column name and unique row identifier;
4: if P is equivalent match then
 set column_con to column_conEEM;
 EEM(value_constant) with the key same as the column_con’s key;
 else
 if P is range queries then
 set column_con to column_conOEM;
 OEM(value_constant) with the key same as the column_con’s key;
 end if
 end if
5: if query is column_name then
set column_name to column_EEM;
 else
 if query is SUM(column1_name) or AVG(column1_name) then
 set column1_name to column1_HEM;
 end if
 end if
6: return the rewritten select statement;
7: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the

column name and unique row identifier.

5.1.4 Updating

If the application issues the query update table1 set column_1 = value where column_2 >
‘value_2’, it will be interpreted to “update table1 set column_1_EEM = value_EEM
（column_1_OEM = value_OEM, column_1_HEM = value_HEM） where column_2_OEM
> ‘value_2_OEM’ ”. The data type of column column_1 is numeric, the value_1 is encrypted
by EEM, OEM and HEM respectively, and the value_2 is encrypted by OEM. Fig. 7
presents the detailed flow of updating process, and Table 5 describes the detailed updating
process.

3388 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Begin

Client parses the
update statementu pdate table1 se t column _ 1 = value

where condition predicate P;

Table name：table1

Update

condition predicate P

Column name：
column_1

DEC_EEMOUTER(colum

n_EEM, key):decrypts the

outer layer with keyupdate table1 set column_1_EEM =

value_EEM（column_1_OEM = value_

OEM，column_1_HEM = value_ HEM）
where condition predicate P*; Rewrite the condition

predicate P and update
value

Update value：
value

Return the rewritten
update statement

EEM_OUTER(value_EEM):encrypt
inner layer with randomized encryption

End

Fig. 7. The detailed flow of updating process
Table 5. Algorithm for Updating.

1: The client receives a update statement from a user, parses the update statement, obtains
table_name, column_name, value_update, condition predicate P;

2: obtains the column’s data type and key from the cloud database according to the
table_name;

3: DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master
key, the column name and unique row identifier;

4: if set clause then
if data type is numeric then
 column_name is extended to column_EEM, column_OEM, and column_HEM;
 EEM(value_update) and the value_update is value_update _EEM after encrption;
 OEM(value_update) and the value_update is value_update _OEM after encrption;
 HEM(value_update) and the value_update is value_update _HEM after encrption;
else
 if data type is char then
 set column_name to column_EEM;
 EEM(value_update) and the value_update is value_update _EEM after encrption;
 end if
 end if
end if
5: if where clause then
 deal with condition predicate the same as Table 4;
 end if
6: return the rewritten select statement;
7: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the

column name and unique row identifier.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3389

5.1.5 Deletion

If the next SQL operation is delete from table1 where column_1 < ‘value_1’, it will be
interpreted to “delete from table1 where column_1_OEM < ‘value_1_OEM’”, where the
value_1 is encrypted by OEM. Fig. 8 presents the detailed flow of deleting process, and we
describe the delete processing in Table 6.

Table 6. Algorithm for Deletion.
1: The client receives a delete statement from a user, parses the delete statement, obtains

table_name, condition predicate P;
2: obtains the column’s data type and key from the cloud database according to the table name;
3: if condition predicate P then
DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master key,

the column name and unique row identifier;
deal with condition predicate the same as Table 4;
 end if
4: return the rewritten delete statement;
5: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the

column name and unique row identifier.

Fig. 8. The detailed flow of deleting process

3390 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

5.2 Advanced queries

For range query (such as > and <), the data type of column is numeric, and the client applies
OEM to encrypt plaintext data. For example, the application issues the query select
column_2 from table1 where column_1 < ‘value’; in which column_1 is for range query, the
value is encrypted by OEM, and the query will be translated as select column_2_ EEM from
table1, where column_1_OEM < ‘value_OEM’.

For data x, y (x < y), we have OEM(x) < OEM(y), and OEM(x) means to encrypt x with
OEM. Hence, the above translated SQL query will still work in the encrypted cloud
database.

The QSDB supports two kinds of joins: eq-joins, in which the join predicate is based on
equality, and ra-joins, which involve order checks. To perform eq-joins and ra-joins, the
QSDB doesn’t need to know in advance the pairs of columns that can be joined, and it can
use EEM with the same key for each group of columns that are joined together.

6. Security Analysis

The security of QSDB mainly consists of the following parts: ciphertext-only attack and a
particular chosen-plaintext attack. In our model, a trusted client sends the SQL query to an
untrusted cloud server via a secure channel, we just store the ciphertext in the untrusted
database, and as a result, the adversary can only get some ciphertext, but nothing else.

6.1 Ciphertext-only attack

We prove that our encryption models can be safe enough under ciphertext-only attack.
Equivalent encryption model (EEM). Equivalent encryption model uses two layers of
encryption: the outer layer is randomized encryption, and inner layer is deterministic
encryption. Randomized encryption provides maximum security without functionality in
QSDB. It is indistinguishable under an adaptive chosen-plaintext attack, because the scheme
is probabilistic, which means that two equal values are mapped to different ciphertexts with
an overwhelming probability.
Order-preserving encryption model (OEM). An attacker cannot calculate the value of
plaintext from the index value, and the same plaintext has different corresponding index
values. Also, the encryption model can fuzz the statistical distributions of plaintext. Without
leaking a, b and non-linear function f(v), the scheme cannot reveal the plaintext to an
attacker. Therefore, OEM can resist ciphertext-only attack.
Homomorphic encryption model (HEM). Based on R in equation (4), the encryption
scheme ensures two encryptions of the same value with the same key have different results,
because different random numbers are used in each encryption. In this way, the encryption
scheme is robust against chosen-plaintext attack and chosen-ciphertext attack. Because the
secret keys cannot be recovered by choosing the pairs of plaintexts and their ciphertexts due

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3391

to noises in the each ciphertext, and more pairs contain more noises. We assume that an
attacker cannot steal k(n) and decryption functions at the same time, and plaintext cannot be
recovered. Also, HEM can resist ciphertext-only attack.

6.2 A particular chosen-plaintext attack

We now define the particular chosen-plaintext attack, and we call it “discontinuous
chosen-plaintext attack”. According to the definition, an adversary only gets k ciphertexts (k
< n, n is the number of ciphertexts) in the same column.

If an adversary wants to obtain the ciphertexts of {v1, v2, … , vl} (l > n) in the same
column, it will only get {Enc(v1), Enc(v2), … , Enc(vk)}, which only contains k ciphertexts
(k < n). Because k < n, and the encryption scheme ensures that two encryptions of the same
value with the same key have different results due to different random numbers in each
encryption, even if an adversary knows the decryption algorithm, it cannot guess the
encryption privacy key. Then, QSDB can resist the particular chosen-plaintext attack.

7. Experimental Evaluation

We evaluated the performance of QSDB by conducting experiments on our prototype. The
prototype was built based on the architecture as shown in Fig. 1. We implemented the
proposed system with Java language in CentOS Linux operation system, and tested its
efficiency and practicality on the real-world data set. The experimental results were obtained
with an Intel Xeon CPU E3-1226 Processor (3.3GHz) and 16.0GB RAM, which has 4
processor cores.

To evaluate its performance, two issues are addressed. First of all, a focus of QSDB is the
performance of encryption model for batch data encryption. Secondly, it is the performance
of QSDB.

7.1 Evaluation of encryption model performance

In our system, we designed the single-layer encryption and two-layer encryption models, and
the main purpose of our design is to protect data privacy and enhance the efficiency of query
processing. We evaluated the performance of encryption model.

7.1.1 Performance evaluation

The encryption models include EEM, OEM and HEM. We programmed these encryption
models and conducted experiment to determine their average execution time. The
performance of the encryption model is shown in Fig. 9 and Table 7. From them, we can get
the following results:

3392 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

(1) Microbenchmarks of cryptographic schemes, per unit of data encrypted (one 64-bit
character data, one 64-bit floating point data) is measured by taking the average time over
many iterations in Table 7. The average execution time of EEM is about 12 us, which is
around 170 times of that of OEM.

(2) To understand the time cost of three encryption models, we measure the processing
time of insert operations, which are encrypted by EEM, OEM and HEM respectively. As Fig.
9 shows, two encryption models OEM and HEM have very close average execution time,
and their average execution time is shorter than that of EEM. In the encryption models OEM
and HEM, their time complexity is O(n), thus their average execution time is very close to
each other.

From the experimental results, we can see that the cryptographic overhead is relatively
small, because most of our encryption models are efficient; Fig. 9 shows their performance.
EEM is the slowest, but it is faster than the encryption schemes of CryptDB. Thus, our
encryption models are practically efficient and safe, and the system can meet needs of most
applications.

Table 7. Execution time of encryption

Encryption model Encrypt Decrypt

EEM (8 char)

Inner
layer 0.006ms 0.006ms

Outer
layer 0.006ms 0.006ms

OEM (1 double) 0.00007ms N/A
HEM (1 double) 0.0001ms 0.00004 ms

Fig. 9. Encryption model

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3393

7.1.2 Evaluation in web applications

The QSDB can be easily deployed in various kinds of database applications. In our
evaluation, we used it to build a secure website based on the above implementation details.
The webpage programming language is Java, and the web server is Apache. To construct the
test platform, we used Java language to construct an application. Moreover, we selected
Mysql as the database server.

To evaluate the performance in real web applications, we focus on comparing the
execution time of SQL operations and QSDB operations. We tested the basic SQL
operations of insert, select, update and delete. The execution time of SQL insert and delete
operations by using QSDB is very close to the execution time of operations without
encryption, as shown in Fig. 10 and Fig. 13. In Fig. 11, with the increase of the number of
select operation, the execution time of plaintext is getting closer to that of ciphertext. As
shown in Fig. 12, we can see that the execution time of SQL update operation by using
QSDB is longer than that without encryption. From the experimental results, we can see that
the system is efficient and acceptable.

Fig. 10. Insert operation

3394 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Fig. 11. Select operation

Fig. 12. Update operation

Fig. 13. Delete operation

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3395

7.2 Comparison of QSDB with CryptDB

We compared QSDB and CryptDB by using a simple synthetic data set on which different
types of operations were executed. Both QSDB and CryptDB were implemented on the same
platform, and they used the same machine configurations for the client and the server.
CryptDB’s idea is to encrypt each data item in one or more onions: that is, each value is
dressed in layers of increasingly stronger encryption. Each layer of each onion enables
certain kinds of functionality as explained in the previous subsection. For example, the
outermost layers, such as RND and HOM, provide maximum security; whereas the inner
layers, such as OPE, provide higher functionality.

Fig. 14 shows the results of seven types of SQL queries, and we make a few observations
from it. The query processing cost of QSDB is much lower than that of CryptDB. Because
QSDB employs two-layer and single-layer encryption models that allow more efficient
computation on encrypted data, it reduces the encryption and decryption computation
overhead. On the other hand, CryptDB uses one or more than two layers of onions to encrypt
data. It is clear that computation based on more onions is generally slower than QSDB’s
schemes. For example, the range query cost of QSDB is much lower than that of CryptDB,
because QSDB uses single-layer encryption model, and CryptDB uses two-layer onions.
Thus, QSDB is more efficient than CryptDB.

Fig. 15 shows the space overheads of QSDB and CryptDB as the number of items are
changed from 1000 to 100000. We compare the encryptions by using QSDB and CryptDB.
They increase the amount of data stored in the DBMS, because they store multiple different
encryption fields for the same field, and because ciphertexts are larger than plaintexts in
some encryption schemes. Clearly, QSDB has lower space overhead, and the space overhead
of CryptDB is more than three times higher than that of QSDB.

Fig. 14. Execution times of QSDB and CryptDB for the 7 sample queries

3396 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Fig. 15. Space Overheads

8. Conclusion

In this paper, we presented QSDB--a system that provides a practical and strong level of
confidentiality for cloud computing environment. The QSDB allows a user to outsource
encrypted floating point numbers to a cloud database for storage and processing. For privacy
preservation, we propose three encryption models to minimize the information revealed to
untrusted cloud server and reduce the encryption and decryption computation overheads. We
also describe a new homomorphic encryption algorithm without definition of special
functions to cut down the computation overhead. In addition, the system uses different levels
of layered encryption, which can enable SQL query to be processed over encrypted data, and
split the SQL query into a server query and a client query. The cloud database retains the
responsibility to manage the persistence of data. The client gets total privacy, and the cost of
cooperating in query execution with the cloud database. Theoretical security analysis and
experimental evaluation by using real-world dataset were carried out to demonstrate the
efficiency of our proposed scheme for practical application.

However, there are still many challenges in QSDB. Firstly, the QSDB uses three
encryption models to encrypt privacy data, which can guarantee the security of the system,
and it can also execute SQL query over encrypted database. But a combination of three
encryption models can increase the computation cost and space overhead. Secondly, to
evaluate the three encryption model’s performance, per unit of data encrypted (one 64-bit
character data, one 64-bit floating point data) is measured by taking the average time over
many iterations. It is not a best test solution. In the future works, we will try to improve the
QSDB to handle these challenges.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3397

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61572263,
61502251 and 61502243), the Project of Natural Science Research of Jiangsu University
(14KJB520027，15KJB520027), the Natural Science Foundation of Jiangsu Province
(BK20151511), the Natural Science Foundation of Anhui Province(1608085MF127), the
Natural Science Foundation of Educational Commission of Anhui Province (KJ2016B17,
KJ2015B19), the Postdoctoral Science Foundation of China (2015M581794), and the
Postdoctoral Science Foundation of Jiangsu (1501023C).

References

[1] S. Aulbach, T. Grust, D. Jacobs, A. Keper, and J. Rittinger, “Multi-tenant databases for software
as a service: schema-mapping techniques,” in Proc. of ACM SIGMOD International Conference
on Management of Data, Vol. 25, 2008, pp. 1195-1206. Article (CrossRef Link)

[2] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska, “Building a database on S3,” in
Proc. of ACM SIGMOD International Conference on Management of Data, Vol. 18, 2008, pp.
251-264. Article (CrossRef Link)

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of ACM Symposium on
Theory of Computing, Vol. 9, 2009, pp. 169-178. Article (CrossRef Link)

[4] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. R. Madden, et al, “Relational Cloud:
A Database-as-a-Service for the Cloud,” in Proc. of CIDR 2011, Fifth Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings,
pp. 235-240.

[5] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Protecting
confidentiality with encrypted query processing,” in Proc. of ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October, pp. 85-100.
Article (CrossRef Link)

[6] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,” in
Proc. of Advances in Cryptology - EUROCRYPT '99, International Conference on the Theory and
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding,
Vol. 5, pp. 223-238. Article (CrossRef Link)

[7] D. Liu, “Homomorphic encryption for database querying,” WO/2013/188929.
[8] Hacigümüş, Hakan, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over encrypted data in the

database-service-provider model,” in Proc. of ACM SIGMOD International Conference on
Management of Data, Madison, Wisconsin, June, 2002, pp. 216-227. Article (CrossRef Link)

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in
Proc. of IEEE Symposium on Security and Privacy, 2012, pp. 44-55.

https://doi.org/10.1145/1376616.1376736
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1007/3-540-48910-X_16
https://dl.acm.org/citation.cfm?doid=564691.564717

3398 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

[10] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and M. Steiner, “Highly-Scalable
Searchable Symmetric Encryption with Support for Boolean Queries,” Advances in
Cryptology–CRYPTO 2013, Springer Berlin Heidelberg, 2013, pp. 353-373.
Article (CrossRef Link)

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption:
improved definitions and efficient constructions,” Journal of Computer Security, Vol. 19, 2011,
pp. 895-934. Article (CrossRef Link)

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword ranked
search over encrypted cloud data,” Proceedings - IEEE INFOCOM, Vol. 25, 2011, pp. 829-837.
Article (CrossRef Link)

[13] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-keyword fuzzy search over
encrypted data in the cloud,” Proceedings - IEEE INFOCOM, 2014, pp. 2112-2120.
Article (CrossRef Link)

[14] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving efficient cloud search services:
multi-keyword ranked search over encrypted cloud data supporting parallel computing,” IEICE
Transactions on Communications, Vol. E98.B, 2015, pp. 190-200.

[15] B. Dan, and B. Waters, “Conjunctive, Subset, and Range Queries on Encrypted Data,” in Proc.
of The Theory of Cryptography Conference, Vol. 4392, 2006, pp. 535-554.
Article (CrossRef Link)

[16] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure multidimensional range queries
over outsourced data,” Vldb Journal International Journal on Very Large Data Bases, Vol. 21,
2012, pp. 333-358. Article (CrossRef Link)

[17] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query processing with strong
privacy protection for cloud computing,” Pvldb, Vol. 7, 2014, pp. 1953-1964.

Article (CrossRef Link)
[18] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries over

encrypted data,” Proceedings of the Vldb Endowment, Vol. 6, 2013, pp. 289-300.
 Article (CrossRef Link)

[19] D. Liu, and S. W. †, “Nonlinear order preserving index for encrypted database query in service
cloud environments,” Concurrency and Computation Practice and Experience, Vol. 25, 2013, pp.
1967–1984. Article (CrossRef Link)

[20] D. Agrawal, A. E. Abbadi, F. Emekci, A. Metwally, and S. Wang, “Secure Data Management
Service on Cloud Computing Infrastructures,” New Frontiers in Information and Software as
Services, Springer Berlin Heidelberg, Vol. 74, 2011, pp. 57-80. Article (CrossRef Link)

[21] S. Bajaj, and R. Sion, “Trusteddb: a trusted hardware based database with privacy and data
confidentiality,” in Proc. of SIGMOD, 2011.

[22] A. H. M. S. Sattar, J. Li, X. Ding, J. Liu, and M. Vincent, “A general framework for privacy
preserving data publishing,” Knowledge-Based Systems, Vol. 54, 2013, pp. 276-287.
Article (CrossRef Link)

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.1109/INFCOM.2011.5935306
https://doi.org/10.1109/INFOCOM.2014.6848153
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/s00778-011-0245-7
https://doi.org/10.14778/2733085.2733100
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.1002/cpe.2992
https://doi.org/10.1007/978-3-642-19294-4_3
https://doi.org/10.1016/j.knosys.2013.09.022

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018 3399

[23] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-EncDB: A lightweight framework
for privacy-preserving data queries in cloud computing,” Knowledge-Based Systems, Vol. 79,
2015, pp. 18-26.Article (CrossRef Link)

Guo-Xiu Liu, born in 1982. PhD at the School of Computer Science and
Technology, Nanjing University of Posts and Telecommunications. Her current
research interests include data security and privacy protection, and cloud computing
security.

Geng Yang, born in 1961. Professor and PhD supervisor with the School of

Computer Science and Technology, Nanjing University of Posts and

Telecommunications. His current research interests include computer communication

and networks, parallel and distributed computing, cloud computing security, and

information security.

Hai-Wei Wang，born in 1989. Master at the School of Computer Science and
Technology, Nanjing University of Posts and Telecommunications. His current
research interests include data security and privacy protection, and cloud computing
security.

https://doi.org/10.1016/j.knosys.2014.04.010

3400 Hangyu Gu et al.: Analytical Study on Inter-Cell
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks

Hua Dai，born in 1982. PhD and Associate professor with the School of Computer
Science and Technology, Nanjing University of Posts and Telecommunications. His
current research interests include database security, distributed data management and
security.

Qiang Zhou，born in 1978. received his Ph.D. degree in the School of Computer

Science and Technology from Nanjing University of Posts and Telecommunications in

2014. He is currently an Associate Professor at Chuzhou University. His research

interests include wireless sensor networks, parallel and distributed computing, and

information security.

