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Abstract 

 
With the advent of database-as-a-service (DAAS) and cloud computing, more and more data 
owners are motivated to outsource their data to cloud database in consideration of 
convenience and cost. However, it has become a challenging work to provide security to 
database as service model in cloud computing, because adversaries may try to gain access to 
sensitive data, and curious or malicious administrators may capture and leak data. In order to 
realize privacy preservation, sensitive data should be encrypted before outsourcing. In this 
paper, we present a secure and practical system over encrypted cloud data, called QSDB 
(queryable and secure database), which simultaneously supports SQL query operations. The 
proposed system can store and process the floating point numbers without compromising the 
security of data. To balance tradeoff between data privacy protection and query processing 
efficiency, QSDB utilizes three different encryption models to encrypt data. Our strategy is 
to process as much queries as possible at the cloud server. Encryption of queries and 
decryption of encrypted queries results are performed at client. Experiments on the 
real-world data sets were conducted to demonstrate the efficiency and practicality of the 
proposed system. 
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1. Introduction 

 With the introduction of remote storage and cloud computing services, more and more 

companies are offering outsourced services based on databases [1,2], as witnessed by 
Amazon’s RDS (relational database service) and Microsoft’s SQL Azure. Today, many 
enterprises and end users may outsource their data to those cloud service providers for lower 
cost and better performance. In fact, a number of database systems on the cloud have been 
developed recently, which offer high availability and flexibility at relatively low costs. 
However, an adversary can exploit the vulnerability of software to gain access to sensitive 
information; curious or malicious administrators at those cloud service providers can snoop 
on private data and leak data. Undoubtedly, security and privacy of data are main concerns. 
To minimize the risk of data leakage, one approach to address these concerns is that the data 
owners opt to encrypt their sensitive data before outsourcing to the cloud database. However, 
encrypted data also brings significant difficulties in executing SQL and computing over 
these data. For example, encrypted data loses its original order without set of primitive 
operators, such as equality checks, order comparisons, aggregates (sums), and joins. It is 
obviously impractical to download encrypted data from cloud database and decrypt locally. 

To date, researchers have designed theoretical solutions with fully homomorphic 
encryption [3] to address the above problem. However, because of expensive computational 
overhead, fully homomorphic encryption schemes are not practical for either cloud database 
providers or users. On the contrary, CryptDB’s approach is to protect private data and 
support efficiently SQL query over encrypted data, and the key insight that makes it practical 
is that SQL uses a well-defined set of operators [4,5].  

In an e-heathcare cloud system, the personal health data (e.g., blood glucose, insulin, and 
C-peptide levels) always contain real numbers, which are sent to the cloud database for 
storage and processing. However, CryptDB protects only integer values and computations on 
integers, which affects the accuracy of data and decision making results, and it may even 
lead to wrong diagnosis of a patient’s illness. Moreover, CryptDB implemented certain 
operations by using user-defined functions (UDFs), which is not suitable in some cases. For 
example, user has no permission to create UDFs in the cloud database, and CryptDB uses 
mOPE (mutable order-preserving encoding) to support order operations. Although mOPE 
has ideal security, the interaction and tree balancing will affect its efficiency.  

The objective of this paper is to design an efficient system called QSDB to address the 
issues mentioned above, which makes tradeoff between security, privacy and practicality. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                     3377 

We propose a new encryption model to implement the direct addition, multiplication, order 
comparison and equality without using user-defined functions. Therefore, QSDB can support 
floating point numbers calculation without compromising the privacy of sensitive data. 
Moreover, the frequent interactive communication between the cloud server and the client is 
not required. Once user issues a floating point calculation request, the client just encrypts the 
sensitive data, sends the query, and waits for the results from cloud server. 

The rest of this paper is organized as follows. Related works is discussed in Section 2. 
Section 3 gives a brief introduction of the system and attack model. Section 4 presents the 
encryption model. Section 5 describes how the SQL query works. Section 6 gives security 
analysis. Section 7 presents the experiments and performance analysis. And Section 8 covers 
the conclusion. 

2. Related Works 

Search and queries over encrypted data. The problem of processing queries for the 
outsourced database is not new. The seminal paper [8] proposed executing SQL query over 
encrypted data by using bucketization. Since then, a number of techniques related to 
practical query processing over encrypted data have been proposed, including keyword 
search queries [9-14] and range queries [15-17]. CryptDB was the first system that can 
execute the SQL queries over encryption data [5]. Based on CryptDB, Tu designed and 
implemented a database encryption system that can divide task [18]. Surprisingly, to the best 
of our knowledge, none of the existing works can solve the SQL query over encrypted 
Database in Cloud Computing in a secure and efficient manner. 

Privacy-preserving. Techniques used to protect sensitive data allow SQL query on 
encrypted data to be processed just like on plaintext. These methods can provide security by 
using order-preserving [19], which allows order-relation data items to be established based 
on their encrypted values without revealing the data itself, and it adopts efficient 
homomorphic encryption [7]. There are also some other related privacy-preserving methods 
proposed to ensure security in database [21–23]. 
Databases as service. There is an increasing interest in database-as-a-service in the cloud 
[4,20]. Based on the idea, we designed QSDB.   

3. System and Encryption Model 

3.1 System model 

Fig. 1 describes the overall architecture. The trusted client receives queries from 
applications(1), and transforms the queries(2); it sends the queries to the untrusted cloud 
server(3), receives results (consisting of encrypted data)(4), decrypts the results by using 
corresponding keys, and sends the decrypted result to the applications(5). To balance 
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tradeoff between data privacy protection and query processing efficiency, QSDB utilizes 
three different encryption models to encrypt data. 

The system model in this paper involves two different entities: trusted client and untrusted 
cloud server. 

 
Fig. 1. QSDB architecture 

 
Trusted client. In this system model, trusted client encrypts all data and stores encrypted 

data at the cloud server. Trusted client also translates the user SQL query to appropriate 
representation at the cloud server, and performs post-processing of cloud server query results. 
Its key components contain: 

1. Rewriting SQL Query: Applications pose SQL query to the client, and it can parse the 
SQL statements and analyze the types of queries. Analytic functions should encrypt plaintext 
data and modify the name of column in the SQL statements according to types of queries, 
such as to create, select, insert, update, and delete. To illustrate how to rewrite a SQL query, 
consider the query select name from student, where id = 1, and the rewritten query is select 
name_EEM from student, where id_EEM = ‘Edaf···df’, column name_EEM corresponds to 
name, column id_EEM corresponds to id, and ‘Ed···f’ is the EEM (Equivalent encryption 
model) inner encryption of 1. 

2. Encryption And Decryption Engine: Through three encryption models (such as 
equivalent encryption model, order-preserving encryption model, and homomorphic 
encryption model), the encryption engine encrypts plaintext data from applications. And the 
decryption engine decrypts the query results from the cloud server. 

3. Keys Manager: There are two challenges in managing the keys. First of all, the keys 
manager should dynamically generate work keys for the equivalent encryption model. The 
second challenge is to obtain a key from the metadata table that combines metadata 
management for order-preserving encryption model and homomorphic encryption model. 

4. Database Connectivity: The main function of database connectivity is responsible of 
connecting to the cloud database. And it can connect to different cloud databases. 
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5. Metadata Manager: Metadata Manager provides the data storage and access 
capabilities, which stores the attribute information of plaintext and the keys of 
order-preserving encryption model and homomorphic encryption model in metadata tables. 

Untrusted cloud server. In this system model, an untrusted cloud server is hosted by the 
service provider who stores the encrypted database. The encrypted database is augmented 
with additional information which allows certain amount of query processing to occur at the 
cloud server without jeopardizing data privacy. 

1. Metadata tables: Metadata tables store the attribute information of plaintext and the 
keys of order-preserving encryption model and homomorphic encryption model. For 
example, the structure of a metadata table is as shown in Table 1. The metadata table stores 
the information of table M1. Table M1 consists of three columns--column C1, column C2 
and column C3, the types of columns are int, double and char respectively, and the names 
and types of columns are without encryption. For numeric data, the metadata tables store the 
keys of order-preserving encryption model and homomorphic encryption model, but for 
character data, the two columns are set to null. To protect the information of metadata tables, 
we encrypt the metadata tables with EEM. 

2. Ciphertext data tables: Ciphertext data tables store encrypted data. 
 

Table 1. The structure of a metadata table 
  

Table  Column Type OEM Key HEM Key 
M1 C1 int *** *** 
M1 C2 double *** *** 
M1 C3 char null null 

 
 In our system, another challenge is to minimize the amount of confidential information 

revealed to the cloud server. To protect data privacy, sensitive data has to be encrypted 
before outsourcing. The simple and popular solutions adopted for data privacy are traditional 
encryption techniques, such as public key encryption and symmetric key encryption. 
However, traditional database encryption will destroy the data structure of original data, and 
it cannot support various kinds of SQL operations. We use three encryption models to 
encrypt privacy data, which can guarantee the security of the system, and also execute SQL 
query over encrypted database. 

A practical QSDB should be efficient and provably secure, and it has the following 
challenges: 

(1) Traditional encryption scheme can only encrypt positive integers and zero over a finite 
field. Therefore, QSDB can encrypt the floating point numbers without compromising the 
privacy of sensitive data. 

(2)The SQL query can be processed over the encrypted data. 
(3)In order to support processing of SQL query, the basic operations (e.g. addition, 
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multiplication, and comparison) on ciphertext need to be constructed. 

3.2 Attack model 

Our model consists of a trusted client and an untrusted cloud server that interact with each 
other. The client encrypts the floating point numbers, and the server performs the SQL query 
over the encrypted data. We consider two types of attackers: 

(1) Adversaries can access the database, which can see encrypted data and database 
structure, and launch ciphertext-only attack. 

(2) Adversaries have more knowledge to guess the encryption details. In order to guess the 
encryption private key, they will try to launch chosen-plaintext attack.  

 In practical applications, the first type of adversaries is considered as the main threat. 
Because it is easy for curious adversary to obtain the ciphertext stored in cloud database, it is 
much harder to get the encryption private key in the cloud database environment. Therefore, 
the security against the ciphertext-only attack is our basic and practical security goal. 

4. Encryption Model 

In our system, we design the single-layer encryption and two-layer encryption models, and 
the main purpose of our design is to protect data privacy and enhance the efficiency of query 
processing. Let us describe the encryption models that QSDB uses, including equivalent 
encryption model, order-preserving encryption model, and homomorphic encryption model, 
as shown in Fig. 2. For each encryption model, we explain the security property that QSDB 
requires from it, its functionality, and how it is implemented. 

outer  layer : randomized encryption

inner layer: deterministic encryption order-preserving 
encryption Homomorphic encryption

Equivalent encryption model Order-preserving encryption model Homomorphic 
encryption model

Fig. 2. Encryption Model 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                     3381 

4.1 Equivalent encryption model (EEM) 

Equivalent encryption model uses two layers of encryption: the outer layer is randomized 
encryption, and inner layer is deterministic encryption. In efficient construction of 
randomized encryption, a block cipher is used, such as AES with a random variable (salt). 
Salt, which is used by each data, consists of three parts: master key, column name and row 
identifier. The master key is a unique key for each user. The row identifier is used to indicate 
the current number of rows, and this value is not repeatable. Column name is a plaintext 
column name, which cannot be obtained directly from the database. Salt is generated by the 
client, and it is not saved in database. Deterministic encryption has a slightly weaker 
guarantee, yet it allows the cloud server to perform selects with equality predicates, equality 
JOINS, GROUP BY, COUNT, DISTINCT, etc.  

To implement different levels of security strength and computational support, each value 
in the table is dressed in layer of deterministic encryption as the inner layer, and then, the 
inner layer is dressed in layer of randomized encryption as the outermost layer, as shown in 
Fig. 2. As the client receives SQL query from applications, it determines whether the layers 
of encryption need to be removed. The data maintains two encrypted states if selects are 
without equality predicates; otherwise, the client strips off the outermost layer to allow 
executing SQL query by sending corresponding outermost layer key to the cloud server. 
After SQL queries are completed, the inner layer can be re-encrypted immediately back to 
the outermost layer, and the data maintains the safest state. This property ensures that the 
QSDB’s security risks problem can be solved. 

In our design, deterministic encryption uses a block cipher like AES with ECB mode. 
Master key and column name dynamically generate its key, and a trusted client uses the 
same key for encrypting values in the same column. We propose the brand new idea for 
generating keys, and the keys don’t need to be saved. For example, for user’s master key and 
column c, the client uses the key: 

                   , , (  ,  ),=mk c tK f MasterKey mk Column c               (1) 

where f is a pseudorandom permutation function. Then, QSDB can perform eq-joins with the 
same key. 

4.2 Order-preserving encryption model (OEM)  

Order-preserving encryption model uses single-layer encryption, and it encrypts the floating 
point numbers through order-preserving encryption. The model is used for numeric data 
encryption, and it supports range queries over encrypted data. In this strategy, we implement 
the nonlinear guaranteed order indexing scheme [19] proposed by Liu D. in 2013. Given the 
sensitivity sens of input values v, an order-preserving encryption scheme is a function F:  

                   [ , , ] ( ) ( ) ,= × × + +sens
a b fnindex v a f v v b noise                  (2) 
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where noise is sampled from the range [0, a*f(v+sens)*(v+sens) - a*f(v)*v], a>0; v denotes 
numeric plaintext and belongs to plaintext space; f(v) is a nonlinear function about v, f(v)>0 
for v ≠ 0, f(v1)≥f(v2) for v1 > v2 ≥ 0 or v1 < v2 ≤ 0, and f(v), a, b are keys. The scheme 
shows that the indexing process is irreversible. And this scheme not only keeps the order 
information in the plaintext, but has also overcome the security vulnerabilities of the linear 
order preserving indexing scheme proposed in 2012. Therefore, the model can ensure the 
security of the plaintext data, perform SQL queries over encrypted data directly and reduce 
the computation cost. 

4.3 Homomorphic encryption model (HEM) 

Homomorphic encryption model uses single-layer encryption, which adopts homomorphic 
encryption to encrypt the floating point numbers. Homomorphic encryption is a specially 
designed encryption scheme that allows direct computation over encrypted data and provides 
maximum security. To support SUM, AVG and multiplication query, we implemented D. 
Liu’s cryptosystem [7]. The encryption scheme is designed with the following form, where 
Enc is the encryption algorithm of the encryption scheme,  

                            1( , ( )) ( ,..., ),= nEnc v k n c c                        (3) 

v is a floating point numbers to be encrypted, n is the number of sub-ciphertexts, and k(n) is 
the key. The right side of the equation is the ciphertext, representing the plaintext after the 
encryption generated n sub-ciphertexts. 

The sub-ciphertexts satisfy the following equation: 

                      ( ( ), ) ( ( ), ),= +i i ic Value k n v Noise k n R                   (4) 

where Valuei(k(n),v) is a i th function over k(n) and v, and Noisei(k(n),R) is a i th function 
over k(n) and R. Valuei(k(n),v) and Noisei(k(n),R) may have a linear time complexity with 
respect to n.  

The decryption algorithm is defined as: 
 

1( ( ), ( ,..., )) .=nDec k n c c v  
 

HEM supports homomorphic addition and homomorphic multiplication. Without 
definition of special functions, the encryption algorithm can significantly reduce 
computation cost and perform aggregations on floating point values. 

5. Executing SQL Query Over Encrypted Database 

The client receives SQL query from applications, and it translates the SQL query. Next, we 
describe how QSDB supports SQL query over encrypted data. QSDB enables the cloud 
server to execute SQL query on encrypted data almost as if it were executing the same 
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queries on plaintext data, such as table creation (create), insertion (insert), selection (select), 
updating (update) and deletion (delete). Existing applications do not need to be changed.  

5.1 Basic SQL operations 

For basic data operations (create, insert, select, update and delete), the QSDB replaces the 
plaintext with corresponding ciphertext encrypted by EEM, OEM and HEM. In other words, 
data is encrypted by using various encryption models to support different types of operations. 
At this point, the cloud server can learn nothing about the data other than the number of 
columns, rows, and data size. Following are some other notations. 
COL – The columns, namely, the set of columns, denoted as COL={col1,col2,…,coln}. 
COLID – COLID stores the identity of a column. 
num – The number of columns. 

5.1.1 Table creation 

To illustrate how to translate encrypted SQL operations with three encryption models, 
consider the SQL operation create table table1 (column_1 numeric, column_2 char), where 
the data type of column column_1 is numeric, and the column column_1 is extended to 
column column_1_EEM, column column_1_OEM and column column_1_HEM. The values 
of column column_1_EEM, column_1_OEM and column_1_ HEM are encrypted by EEM, 
OEM and HEM respectively. The data type of column column_2 is char, which is encrypted 
by EEM, and corresponding column name is column_2_EEM (see Fig. 3). We describe the 
detailed table creation process in Table 2. 

 
Fig. 3. When the application creates the table, the client uses different encryption model according 

to data type 
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Table 2. Algorithm for Table creation 

1: The client receives a create statement from a user, parses the create statement, obtains 
table_name, column_name, value_type, and stores these data in cloud database. 

COL = {col1, col2, …, coln} with the identifiers COLID = {COLID|COLID = 1, 2, …, n}. 
2: for each column COLID in COL do 
     if data type is numeric then 
       column_name is extended to column_EEM, column_OEM, and column_HEM; 
       EEM(column_EEM) and set value_type to text; 
       OEM(column_OEM) and set value_type to double; 
       HEM(column_HEM) and set value_type to double; 
     else 
         if data type is char then 
           set column_name to column_EEM; 
           EEM(column_EEM) and set value_type to text; 
           increase a row identifier as a primary key; 
         end if 
     end if 
  end for 
3: return the rewritten create statement. 

 

5.1.2 Insertion 

If the application issues the query insert into table1(column_1, column_2) values(value_1, 
value_2), where the data type of column column_1 is numeric, and the value_1 is encrypted 
by EEM, OEM and HEM respectively. The data type of column column_2 is char, and the 
value_2 is encrypted by EEM (see Fig. 4). Note that the client must request the data types of 
columns and encryption keys from a metadata table according to corresponding table name. 
Fig. 5 describes the detailed flow of inserting process, and we present the detailed inserting 
process in Table 3. 
 

 
Fig. 4. The encrypted values layout at the cloud database, ciphertexts shown are not full-length 
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Fig. 5. The detailed flow of inserting process 

 
Table 3. Algorithm for Insertion 

1: The client receives an insert statement from a user, parses the insert statement, obtains 
table_name, column_name, and value. 

COL = {col1, col2, …, coln} with the identifiers COLID = {COLID|COLID = 1, 2, …, n}, num 
= 0; 

2: obtains the column’s data type from the cloud database according to the table_name; 
3: for each column COLID in COL do 
     if data type is numeric then 
       column_name is extended to column_EEM, column_OEM, and column_HEM; 
       EEM(value) and the value is value_EEM after encrption; 
       OEM(value) and the value is value_OEM after encrption; 
       HEM(value) and the value is value_ HEM after encrption; 
       num++; 
     else 
         if data type is char then 
           set column_name to column_EEM; 
           EEM(value) and the value is value_EEM after encrption; 
           num++; 
         end if 
     end if 
  end for 
4: return the rewritten insert statement; 
5: for i = 1,…,num  do 
      EEM_OUTER(value_EEM) with key generation according to the user’s master key, the 

column name and unique row identifier; 
  end for 
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5.1.3 Selection 

If the next SQL operation is select column_1 from table1 where column_2 = ‘value_2’, it 
requires lowering the encryption of column_2 to inner layer. To execute this operation, the 
client first requests the data types of columns and encryption keys from a metadata table 
according to corresponding table name, and decrypts the outer layer using the key, which is 
based on the user's master key; a column name and a row identifier are generated, and a row 
identifier is unique, column_2_inner = DEC_EEMOUTER(Ki,j,l), where i is user's master key, 
j is column_2 name, and l is row identifier. The client then issues the query select 
column_1_EEM from table1 where column_2_inner = value_2_inner, where value_2_inner 
is the EEM inner encryption of “value_2” with key Kmk,c,t. Finally, the client decrypts the 
result from the cloud server by using keys Kmk,c,t and Ki,j,l, obtains the result value_1, and 
returns it to the application. Fig. 6 presents the detailed flow of selecting process, and Table 
4 describes the detailed selecting process. 
 

 
Fig. 6. The detailed flow of selecting process 
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Table 4. Algorithm for Selection 

1: The client receives a select statement from a user, parses the select statement, obtains 
table_name, column_name or SUM(column1_name) or AVG(column1_name), condition predicate 
P; 

2: obtains the column’s data type and key from the cloud database according to the table name; 
3: DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master 

key, the column name and unique row identifier; 
4: if P is equivalent match then 
     set column_con to column_conEEM; 
     EEM(value_constant) with the key same as the column_con’s key; 
  else 
     if P is range queries then 
        set column_con to column_conOEM; 
        OEM(value_constant) with the key same as the column_con’s key; 
     end if 
  end if 
5: if query is column_name then  
set column_name to column_EEM;  
  else 
      if query is SUM(column1_name) or AVG(column1_name) then 
        set column1_name to column1_HEM; 
      end if 
  end if 
6: return the rewritten select statement; 
7: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the 

column name and unique row identifier. 
 

5.1.4 Updating 

If the application issues the query update table1 set column_1 = value where column_2 > 
‘value_2’, it will be interpreted to “update table1 set column_1_EEM = value_EEM
（column_1_OEM = value_OEM, column_1_HEM = value_HEM） where column_2_OEM 
> ‘value_2_OEM’ ”. The data type of column column_1 is numeric, the value_1 is encrypted 
by EEM, OEM and HEM respectively, and the value_2 is encrypted by OEM. Fig. 7 
presents the detailed flow of updating process, and Table 5 describes the detailed updating 
process. 
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Begin

Client parses the 
update statementu pdate table1  se t  column _ 1  =  value  

where condition predicate P;

Table name：table1

Update

condition predicate P

Column name：
column_1

DEC_EEMOUTER(colum

n_EEM, key):decrypts the 

outer layer with keyupdate table1 set column_1_EEM = 

value_EEM（column_1_OEM = value_ 

OEM，column_1_HEM = value_ HEM）  
where condition predicate P*; Rewrite the condition 

predicate P and update 
value

Update value：
value

Return the rewritten 
update statement

EEM_OUTER(value_EEM):encrypt 
inner layer with randomized encryption

End
 

Fig. 7. The detailed flow of updating process 
Table 5. Algorithm for Updating. 

1: The client receives a update statement from a user, parses the update statement, obtains 
table_name, column_name, value_update, condition predicate P; 

2: obtains the column’s data type and key from the cloud database according to the 
table_name; 

3: DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master 
key, the column name and unique row identifier; 

4: if set clause then 
if data type is numeric then 
      column_name is extended to column_EEM, column_OEM, and column_HEM; 
      EEM(value_update) and the value_update is value_update _EEM after encrption; 
      OEM(value_update) and the value_update is value_update _OEM after encrption; 
      HEM(value_update) and the value_update is value_update _HEM after encrption; 
else  
       if data type is char then 
         set column_name to column_EEM; 
         EEM(value_update) and the value_update is value_update _EEM after encrption; 
       end if 
    end if 
end if 
5: if where clause then 
     deal with condition predicate the same as Table 4; 
  end if 
6: return the rewritten select statement; 
7: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the 

column name and unique row identifier. 
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5.1.5 Deletion 

If the next SQL operation is delete from table1 where column_1 < ‘value_1’, it will be 
interpreted to “delete from table1 where column_1_OEM < ‘value_1_OEM’”, where the 
value_1 is encrypted by OEM. Fig. 8 presents the detailed flow of deleting process, and we 
describe the delete processing in Table 6. 
 

Table 6. Algorithm for Deletion. 
1: The client receives a delete statement from a user, parses the delete statement, obtains 

table_name, condition predicate P; 
2: obtains the column’s data type and key from the cloud database according to the table name; 
3: if condition predicate P then 
DEC_EEMOUTER(column_EEM, key) with key generation according to the user’s master key, 

the column name and unique row identifier; 
deal with condition predicate the same as Table 4; 
  end if 
4: return the rewritten delete statement; 
5: EEM_OUTER(column_EEM) with key generation according to the user’s master key, the 

column name and unique row identifier. 
 

 
Fig. 8. The detailed flow of deleting process 
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5.2 Advanced queries 

For range query (such as > and <), the data type of column is numeric, and the client applies 
OEM to encrypt plaintext data. For example, the application issues the query select 
column_2 from table1 where column_1 < ‘value’; in which column_1 is for range query, the 
value is encrypted by OEM, and the query will be translated as select column_2_ EEM from 
table1, where column_1_OEM < ‘value_OEM’. 

For data x, y (x < y), we have OEM(x) < OEM(y), and OEM(x) means to encrypt x with 
OEM. Hence, the above translated SQL query will still work in the encrypted cloud 
database. 

The QSDB supports two kinds of joins: eq-joins, in which the join predicate is based on 
equality, and ra-joins, which involve order checks. To perform eq-joins and ra-joins, the 
QSDB doesn’t need to know in advance the pairs of columns that can be joined, and it can 
use EEM with the same key for each group of columns that are joined together. 

6. Security Analysis 

The security of QSDB mainly consists of the following parts: ciphertext-only attack and a 
particular chosen-plaintext attack. In our model, a trusted client sends the SQL query to an 
untrusted cloud server via a secure channel, we just store the ciphertext in the untrusted 
database, and as a result, the adversary can only get some ciphertext, but nothing else. 

6.1 Ciphertext-only attack  

We prove that our encryption models can be safe enough under ciphertext-only attack. 
Equivalent encryption model (EEM). Equivalent encryption model uses two layers of 
encryption: the outer layer is randomized encryption, and inner layer is deterministic 
encryption. Randomized encryption provides maximum security without functionality in 
QSDB. It is indistinguishable under an adaptive chosen-plaintext attack, because the scheme 
is probabilistic, which means that two equal values are mapped to different ciphertexts with 
an overwhelming probability. 
Order-preserving encryption model (OEM). An attacker cannot calculate the value of 
plaintext from the index value, and the same plaintext has different corresponding index 
values. Also, the encryption model can fuzz the statistical distributions of plaintext. Without 
leaking a, b and non-linear function f(v), the scheme cannot reveal the plaintext to an 
attacker. Therefore, OEM can resist ciphertext-only attack. 
Homomorphic encryption model (HEM). Based on R in equation (4), the encryption 
scheme ensures two encryptions of the same value with the same key have different results, 
because different random numbers are used in each encryption. In this way, the encryption 
scheme is robust against chosen-plaintext attack and chosen-ciphertext attack. Because the 
secret keys cannot be recovered by choosing the pairs of plaintexts and their ciphertexts due 
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to noises in the each ciphertext, and more pairs contain more noises. We assume that an 
attacker cannot steal k(n) and decryption functions at the same time, and plaintext cannot be 
recovered. Also, HEM can resist ciphertext-only attack. 

6.2 A particular chosen-plaintext attack 

We now define the particular chosen-plaintext attack, and we call it “discontinuous 
chosen-plaintext attack”. According to the definition, an adversary only gets k ciphertexts (k 
< n, n is the number of ciphertexts) in the same column. 

If an adversary wants to obtain the ciphertexts of {v1, v2, … , vl} (l > n) in the same 
column, it will only get {Enc(v1), Enc(v2), … , Enc(vk)}, which only contains k ciphertexts 
(k < n). Because k < n, and the encryption scheme ensures that two encryptions of the same 
value with the same key have different results due to different random numbers in each 
encryption, even if an adversary knows the decryption algorithm, it cannot guess the 
encryption privacy key. Then, QSDB can resist the particular chosen-plaintext attack. 

7. Experimental Evaluation  

We evaluated the performance of QSDB by conducting experiments on our prototype. The 
prototype was built based on the architecture as shown in Fig. 1. We implemented the 
proposed system with Java language in CentOS Linux operation system, and tested its 
efficiency and practicality on the real-world data set. The experimental results were obtained 
with an Intel Xeon CPU E3-1226 Processor (3.3GHz) and 16.0GB RAM, which has 4 
processor cores. 

To evaluate its performance, two issues are addressed. First of all, a focus of QSDB is the 
performance of encryption model for batch data encryption. Secondly, it is the performance 
of QSDB. 

7.1 Evaluation of encryption model performance 

In our system, we designed the single-layer encryption and two-layer encryption models, and 
the main purpose of our design is to protect data privacy and enhance the efficiency of query 
processing. We evaluated the performance of encryption model.  

7.1.1 Performance evaluation  

The encryption models include EEM, OEM and HEM. We programmed these encryption 
models and conducted experiment to determine their average execution time. The 
performance of the encryption model is shown in Fig. 9 and Table 7. From them, we can get 
the following results: 
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(1) Microbenchmarks of cryptographic schemes, per unit of data encrypted (one 64-bit 
character data, one 64-bit floating point data) is measured by taking the average time over 
many iterations in Table 7. The average execution time of EEM is about 12 us, which is 
around 170 times of that of OEM. 

(2) To understand the time cost of three encryption models, we measure the processing 
time of insert operations, which are encrypted by EEM, OEM and HEM respectively. As Fig. 
9 shows, two encryption models OEM and HEM have very close average execution time, 
and their average execution time is shorter than that of EEM. In the encryption models OEM 
and HEM, their time complexity is O(n), thus their average execution time is very close to 
each other.   

From the experimental results, we can see that the cryptographic overhead is relatively 
small, because most of our encryption models are efficient; Fig. 9 shows their performance. 
EEM is the slowest, but it is faster than the encryption schemes of CryptDB. Thus, our 
encryption models are practically efficient and safe, and the system can meet needs of most 
applications. 

 
Table 7. Execution time of encryption 

Encryption model Encrypt Decrypt 

EEM (8 char)   

Inner 
layer  0.006ms  0.006ms 

Outer 
layer  0.006ms  0.006ms 

OEM (1 double)   0.00007ms N/A 
HEM (1 double)  0.0001ms 0.00004 ms 

 

 
Fig. 9. Encryption model 
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7.1.2 Evaluation in web applications 

The QSDB can be easily deployed in various kinds of database applications. In our 
evaluation, we used it to build a secure website based on the above implementation details. 
The webpage programming language is Java, and the web server is Apache. To construct the 
test platform, we used Java language to construct an application. Moreover, we selected 
Mysql as the database server. 

To evaluate the performance in real web applications, we focus on comparing the 
execution time of SQL operations and QSDB operations. We tested the basic SQL 
operations of insert, select, update and delete. The execution time of SQL insert and delete 
operations by using QSDB is very close to the execution time of operations without 
encryption, as shown in Fig. 10 and Fig. 13. In Fig. 11, with the increase of the number of 
select operation, the execution time of plaintext is getting closer to that of ciphertext. As 
shown in Fig. 12, we can see that the execution time of SQL update operation by using 
QSDB is longer than that without encryption. From the experimental results, we can see that 
the system is efficient and acceptable. 

 

 

Fig. 10. Insert operation 
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Fig. 11. Select operation 

 

 
Fig. 12. Update operation 

 

Fig. 13. Delete operation 
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7.2 Comparison of QSDB with CryptDB 

We compared QSDB and CryptDB by using a simple synthetic data set on which different 
types of operations were executed. Both QSDB and CryptDB were implemented on the same 
platform, and they used the same machine configurations for the client and the server. 
CryptDB’s idea is to encrypt each data item in one or more onions: that is, each value is 
dressed in layers of increasingly stronger encryption. Each layer of each onion enables 
certain kinds of functionality as explained in the previous subsection. For example, the 
outermost layers, such as RND and HOM, provide maximum security; whereas the inner 
layers, such as OPE, provide higher functionality. 

Fig. 14 shows the results of seven types of SQL queries, and we make a few observations 
from it. The query processing cost of QSDB is much lower than that of CryptDB. Because 
QSDB employs two-layer and single-layer encryption models that allow more efficient 
computation on encrypted data, it reduces the encryption and decryption computation 
overhead. On the other hand, CryptDB uses one or more than two layers of onions to encrypt 
data. It is clear that computation based on more onions is generally slower than QSDB’s 
schemes. For example, the range query cost of QSDB is much lower than that of CryptDB, 
because QSDB uses single-layer encryption model, and CryptDB uses two-layer onions. 
Thus, QSDB is more efficient than CryptDB. 

Fig. 15 shows the space overheads of QSDB and CryptDB as the number of items are 
changed from 1000 to 100000. We compare the encryptions by using QSDB and CryptDB. 
They increase the amount of data stored in the DBMS, because they store multiple different 
encryption fields for the same field, and because ciphertexts are larger than plaintexts in 
some encryption schemes. Clearly, QSDB has lower space overhead, and the space overhead 
of CryptDB is more than three times higher than that of QSDB. 

 
Fig. 14. Execution times of QSDB and CryptDB for the 7 sample queries 
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Fig. 15. Space Overheads 

8. Conclusion 

In this paper, we presented QSDB--a system that provides a practical and strong level of 
confidentiality for cloud computing environment. The QSDB allows a user to outsource 
encrypted floating point numbers to a cloud database for storage and processing. For privacy 
preservation, we propose three encryption models to minimize the information revealed to 
untrusted cloud server and reduce the encryption and decryption computation overheads. We 
also describe a new homomorphic encryption algorithm without definition of special 
functions to cut down the computation overhead. In addition, the system uses different levels 
of layered encryption, which can enable SQL query to be processed over encrypted data, and 
split the SQL query into a server query and a client query. The cloud database retains the 
responsibility to manage the persistence of data. The client gets total privacy, and the cost of 
cooperating in query execution with the cloud database. Theoretical security analysis and 
experimental evaluation by using real-world dataset were carried out to demonstrate the 
efficiency of our proposed scheme for practical application. 

However, there are still many challenges in QSDB. Firstly, the QSDB uses three 
encryption models to encrypt privacy data, which can guarantee the security of the system, 
and it can also execute SQL query over encrypted database. But a combination of three 
encryption models can increase the computation cost and space overhead. Secondly, to 
evaluate the three encryption model’s performance, per unit of data encrypted (one 64-bit 
character data, one 64-bit floating point data) is measured by taking the average time over 
many iterations. It is not a best test solution. In the future works, we will try to improve the 
QSDB to handle these challenges. 

 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                     3397 

Acknowledgments 

This work is supported by the National Natural Science Foundation of China (61572263, 
61502251 and 61502243), the Project of Natural Science Research of Jiangsu University 
(14KJB520027，15KJB520027), the Natural Science Foundation of Jiangsu Province 
(BK20151511), the Natural Science Foundation of Anhui Province(1608085MF127), the 
Natural Science Foundation of Educational Commission of Anhui Province (KJ2016B17, 
KJ2015B19), the Postdoctoral Science Foundation of China (2015M581794), and the 
Postdoctoral Science Foundation of Jiangsu (1501023C). 

References 

[1] S. Aulbach, T. Grust, D. Jacobs, A. Keper, and J. Rittinger, “Multi-tenant databases for software 
as a service: schema-mapping techniques,” in Proc. of ACM SIGMOD International Conference 
on Management of Data, Vol. 25, 2008, pp. 1195-1206. Article (CrossRef Link) 

[2] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska, “Building a database on S3,” in 
Proc. of ACM SIGMOD International Conference on Management of Data, Vol. 18, 2008, pp. 
251-264. Article (CrossRef Link) 

[3] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of ACM Symposium on 
Theory of Computing, Vol. 9, 2009, pp. 169-178. Article (CrossRef Link) 

[4] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. R. Madden, et al, “Relational Cloud: 
A Database-as-a-Service for the Cloud,” in Proc. of CIDR 2011, Fifth Biennial Conference on 
Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings, 
pp. 235-240. 

[5] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB: Protecting 
confidentiality with encrypted query processing,” in Proc. of ACM Symposium on Operating 
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October, pp. 85-100.  
Article (CrossRef Link) 

[6] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,” in 
Proc. of Advances in Cryptology - EUROCRYPT '99, International Conference on the Theory and 
Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, 
Vol. 5, pp. 223-238. Article (CrossRef Link) 

[7] D. Liu, “Homomorphic encryption for database querying,” WO/2013/188929. 
[8] Hacigümüş, Hakan, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over encrypted data in the 

database-service-provider model,” in Proc. of ACM SIGMOD International Conference on 
Management of Data, Madison, Wisconsin, June, 2002, pp. 216-227. Article (CrossRef Link)  

[9] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in 
Proc. of IEEE Symposium on Security and Privacy, 2012, pp. 44-55.  

https://doi.org/10.1145/1376616.1376736
https://doi.org/10.1145/1376616.1376645
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1007/3-540-48910-X_16
https://dl.acm.org/citation.cfm?doid=564691.564717


3398                                                          Hangyu Gu et al.: Analytical Study on Inter-Cell 
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks 

[10] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. C. Roşu, and M. Steiner, “Highly-Scalable 
Searchable Symmetric Encryption with Support for Boolean Queries,” Advances in 
Cryptology–CRYPTO 2013, Springer Berlin Heidelberg, 2013, pp. 353-373.  
Article (CrossRef Link) 

[11] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryption: 
improved definitions and efficient constructions,” Journal of Computer Security, Vol. 19, 2011, 
pp. 895-934. Article (CrossRef Link) 

[12] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving multi-keyword ranked 
search over encrypted cloud data,” Proceedings - IEEE INFOCOM, Vol. 25, 2011, pp. 829-837. 
Article (CrossRef Link) 

[13] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-keyword fuzzy search over 
encrypted data in the cloud,” Proceedings - IEEE INFOCOM, 2014, pp. 2112-2120.  
Article (CrossRef Link) 

[14] Z. Fu, X. Sun, Q. Liu, L. Zhou, and J. Shu, “Achieving efficient cloud search services: 
multi-keyword ranked search over encrypted cloud data supporting parallel computing,” IEICE 
Transactions on Communications, Vol. E98.B, 2015, pp. 190-200. 

[15] B. Dan, and B. Waters, “Conjunctive, Subset, and Range Queries on Encrypted Data,” in Proc. 
of The Theory of Cryptography Conference, Vol. 4392, 2006, pp. 535-554.  
Article (CrossRef Link) 

[16] B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure multidimensional range queries 
over outsourced data,” Vldb Journal International Journal on Very Large Data Bases, Vol. 21, 
2012, pp. 333-358. Article (CrossRef Link)  

[17] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query processing with strong 
privacy protection for cloud computing,” Pvldb, Vol. 7, 2014, pp. 1953-1964.  

Article (CrossRef Link) 
[18] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing analytical queries over 

encrypted data,” Proceedings of the Vldb Endowment, Vol. 6, 2013, pp. 289-300. 
 Article (CrossRef Link) 

[19] D. Liu, and S. W. †, “Nonlinear order preserving index for encrypted database query in service 
cloud environments,” Concurrency and Computation Practice and Experience, Vol. 25, 2013, pp. 
1967–1984.  Article (CrossRef Link)  

[20] D. Agrawal, A. E. Abbadi, F. Emekci, A. Metwally, and S. Wang, “Secure Data Management 
Service on Cloud Computing Infrastructures,” New Frontiers in Information and Software as 
Services, Springer Berlin Heidelberg, Vol. 74, 2011, pp. 57-80. Article (CrossRef Link) 

[21] S. Bajaj, and R. Sion, “Trusteddb: a trusted hardware based database with privacy and data 
confidentiality,” in Proc. of SIGMOD, 2011.  

[22] A. H. M. S. Sattar, J. Li, X. Ding, J. Liu, and M. Vincent, “A general framework for privacy 
preserving data publishing,” Knowledge-Based Systems, Vol. 54, 2013, pp. 276-287.  
Article (CrossRef Link) 

https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.3233/JCS-2011-0426
https://doi.org/10.1109/INFCOM.2011.5935306
https://doi.org/10.1109/INFOCOM.2014.6848153
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/s00778-011-0245-7
https://doi.org/10.14778/2733085.2733100
https://doi.org/10.14778/2535573.2488336
https://doi.org/10.1002/cpe.2992
https://doi.org/10.1007/978-3-642-19294-4_3
https://doi.org/10.1016/j.knosys.2013.09.022


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 7, July 2018                     3399 

[23] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong, “L-EncDB: A lightweight framework 
for privacy-preserving data queries in cloud computing,” Knowledge-Based Systems, Vol. 79, 
2015, pp. 18-26.Article (CrossRef Link) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Guo-Xiu Liu, born in 1982. PhD at the School of Computer Science and 
Technology, Nanjing University of Posts and Telecommunications. Her current 
research interests include data security and privacy protection, and cloud computing 
security. 

 

Geng Yang, born in 1961. Professor and PhD supervisor with the School of 

Computer Science and Technology, Nanjing University of Posts and 

Telecommunications. His current research interests include computer communication 

and networks, parallel and distributed computing, cloud computing security, and 

information security. 
 

 

Hai-Wei Wang，born in 1989. Master at the School of Computer Science and 
Technology, Nanjing University of Posts and Telecommunications. His current 
research interests include data security and privacy protection, and cloud computing 
security. 

https://doi.org/10.1016/j.knosys.2014.04.010


3400                                                          Hangyu Gu et al.: Analytical Study on Inter-Cell 
Handover via Non-Concentric Circles in Wireless Heterogeneous Small Cell Networks 

 

Hua Dai，born in 1982. PhD and Associate professor with the School of Computer 
Science and Technology, Nanjing University of Posts and Telecommunications. His 
current research interests include database security, distributed data management and 
security. 

 

Qiang Zhou，born in 1978. received his Ph.D. degree in the School of Computer 

Science and Technology from Nanjing University of Posts and Telecommunications in 

2014. He is currently an Associate Professor at Chuzhou University. His research 

interests include wireless sensor networks, parallel and distributed computing, and 

information security. 
 

 


