• Title/Summary/Keyword: Encoding module

Search Result 69, Processing Time 0.028 seconds

A MFER Generator Module for Bio-Radar Signals (원격 바이오 레이더 신호를 위한 MFER 모듈 개발)

  • Son, Jae Gi;Park, Chang Won
    • Annual Conference of KIPS
    • /
    • 2009.04a
    • /
    • pp.932-933
    • /
    • 2009
  • 최근 의료기기의 디지털화와 더불어 IT 기술의 융복합화에 따라 다양한 의료기기들이 등장하고 있다. 특히 의료분야에서 발생하는 파형을 디지털화 시킴으로써 컴퓨터 등과 같은 기기를 통하여 정확한 분석이 가능하며 장기적으로 보관이 가능하다. 또한 디지털 파형의 포맷 규격을 정형화 함으로써 HL7 이나 DICOM 과 같이 상호 호환성, 정보교환이 가능하다. 특히 ECG, EEG 등과 같은 파형들은 개개인의 건강정보를 분석하기 위해 필수적인 요소이다. 본 논문에서는 ISO/TS 11073-92001 규격으로 제정된 MFER (Medical waveform description Format Encoding Rules)를 기반으로 바이오 레이더 신호를 저장할 수 있는 모듈에 관하여 기술한다.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Statistical Characteristics and Complexity Analysis of HEVC Encoder Software (HEVC 부호화기 소프트웨어의 통계적 특성 및 복잡도 분석)

  • Ahn, Yongjo;Hwang, Taejin;Yoo, Sungeun;Han, Woo-Jin;Sim, Donggyu
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.1091-1105
    • /
    • 2012
  • In this paper, we analyzed statistical characteristics and complexity of HEVC encoder as a leading research of acceleration, optimization and parallelization. Computational complexity of the HEVC encoder is approximately twice the compression performance compared to H.264/AVC. But, the increase of encoder complexity remains a problem to be solved in the future. Before performing the research on acceleration, optimization and parallelization to reduce high complexity of HEVC encoder, we measure the complexity each module for HEVC encoder using it's reference software HM 7.1. We also measured the predicted complexity of fast HEVC encoder software, used in real applications, using HM 7.1 applying fast encoding method. The complexity is measured in terms of the operating cycle of the encoder software under the common test sequences and conditions in the Windows PC environment. In addition, we analyze statistical characteristics of HEVC encoder software according to encoding structures and limitation using coded bitstreams.

Hardware Implementation of RUNCODE Encoder for JBIG2 Symbol ID Encoding (JBIG2 심벌 ID 부호화를 위한 런코드 부호기의 하드웨어 구현)

  • Seo, Seok-Yong;Ko, Hyung-Hwa
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.298-306
    • /
    • 2011
  • In this paper, the RUNCODE encoder hardware IP was designed and implemented for symbol ID code length encoding, which is one of major modules of JBIG2 encoder for FAX. ImpulseC Codeveloper and Xilinx ISE/EDK program are used for the hardware generation and synthesis of VHDL code. The synthesized hardware was downloaded to Virtex-4 FX60 FPGA on ML410 development board. The synthesized hardware utilizes 13% of total slice of FPGA. Using Active-HDL tool, the hardware was verified showing normal operation. Compared with the software operating using Microblaze cpu on ML410 board, the synthesized hardware was better in operation time. The improvement ratio of operation time between the synthesized hardware and software showed about 40 times faster than software only operation. The synthesized H/W and S/W module cooperated to succeed in compressing the CCITT standard document.

Design and Implementation of Binary XML Encoder using Fast Infoset (Fast Infoset을 이용한 Binary XML Encoder의 설계 및 구현)

  • Yu Seong-Jae;Choi Il-Sun;Yoon Haw-Mook;Ahn Byeong-Ho;Jung Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.943-946
    • /
    • 2006
  • XML is the most widely used document format by advantage that self-contained for platform. So, currently the most used among other document format. but XML appeared new problem that memory and transmission. And that be used in environment a request restriction memory and fast transmission as like mobile field. Although discussion of XML binarization is going on progress. And fast Infoset configuration using XML Information Set is receiving attention that a way to lower file size of hold down a existing usage. In this paper, we designed of module using fast Infoset and PER among ASN.1 Encoding Rule for XML binarization. And we implementation of encoder constructed interlace by stage of translation from XML into binary XML.

  • PDF

Development of a High Resolution SPECT Detector with Depth-encoding Capability for Multi-energy Imaging: Monte Carlo Simulation (다중에너지 영상 획득을 위한 Depth-Encoding 고분해능 단일광자단층촬영 검출기 개발: 몬테칼로 시뮬레이션 연구)

  • Beak, Cheol-Ha;Hwang, Ji-Yeon;Lee, Seung-Jae;Chung, Yong-Hyun
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.93-98
    • /
    • 2010
  • The aim of this work was to establish the methodology for event positioning by measuring depth of interaction (DOI) information and to evaluate the system sensitivity and spatial resolution of the new detector for I-125 and Tc-99m imaging. For this purpose, a Monte Carlo simulation tool, DETECT2000 and GATE were used to model the energy deposition and light distribution in the detector and to validate this approach. Our proposed detector module consists of a monolithic CsI(Tl) crystal with dimensions of $50.0{\times}50.0{\times}3.0\;mm^3$. The results of simulation demonstrated that the resolution is less than 1.5 mm for both I-125 and Tc-99m. The main advantage of the proposed detector module is that by using 3 mm thick CsI(Tl) with maximum-likelihood position-estimation (MLPE) method, high resolution I-125 imaging and high sensitivity Tc-99m imaging are possible. In this paper, we proved that our new detector to be a reliable design as a detector for a multi-energy SPECT.

A Robust Staff Line Height and Staff Line Space Estimation for the Preprocessing of Music Score Recognition (악보인식 전처리를 위한 강건한 오선 두께와 간격 추정 방법)

  • Na, In-Seop;Kim, Soo-Hyung;Nquyen, Trung Quy
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this paper, we propose a robust pre-processing module for camera-based Optical Music Score Recognition (OMR) on mobile device. The captured images likely suffer for recognition from many distortions such as illumination, blur, low resolution, etc. Especially, the complex background music sheets recognition are difficult. Through any symbol recognition system, the staff line height and staff line space are used many times and have a big impact on recognition module. A robust and accurate staff line height and staff line space are essential. Some staff line height and staff line space are proposed for binary image. But in case of complex background music sheet image, the binarization results from common binarization algorithm are not satisfactory. It can cause incorrect staff line height and staff line space estimation. We propose a robust staff line height and staff line space estimation by using run-length encoding technique on edge image. Proposed method is composed of two steps, first step, we conducted the staff line height and staff line space estimation based on edge image using by Sobel operator on image blocks. Each column of edge image is encoded by run-length encoding algorithm Second step, we detect the staff line using by Stable Path algorithm and removal the staff line using by adaptive Line Track Height algorithm which is to track the staff lines positions. The result has shown that robust and accurate estimation is possible even in complex background cases.

Design of Two Layer Depth-encoding Detector Module with SiPM for PET (SiPM을 사용한 두 층의 반응 깊이를 측정하는 양전자방출단층촬영기기의 검출기 모듈 설계)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.319-324
    • /
    • 2019
  • A depth-encoding detector module with silicon photomultipliers(SiPMs) using two layers of scintillation crystal array was designed, and the position measurement capability was verified using DETECT2000. The depth of interaction of the crystal pixels with the gamma rays was tracked through the image acquired with the combination of surface treatment of the crystal pixels and reflectors. The bottom layer was treated as a reflector except for the optically coupled surfaces, and the crystals of top layer were optically coupled each other except for the outer surfaces so that the light sharing was made easier than the bottom layer. Flood images were obtained through the combination of specular reflectors and random reflectors, grounded and polished surfaces of crystal pixels, and the positions at which layer images were generated were measured and analyzed. The images were reconstructed using the Anger algorithm, whose the SiPM signals were reduced as the 16-channels to 4-channels. In the combination of the grounded surface and all reflectors, the depth positions were discriminated into two layers, whereas it was impossible to separate the two layers in the all polished surface combinations. Therefore, using the combination of grounded surface crystal pixels and reflectors could improve the spatial resolution at the outside of the field of view by measuring the depth position in preclinical positron emission tomography.

Expression and Characterization of Polyketide Synthase Module Involved in the Late Step of Cephabacin Biosynthesis from Lysobacter lactamgenus

  • Lee, Ji-Seon;Vladimirova, Miglena G.;Demirev, Atanas V.;Kim, Bo-Geum;Lim, Si-Kyu;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.427-433
    • /
    • 2008
  • The cephabacins produced by Lysobacter lactamgenus are ${\beta}$-lactam antibiotics composed of a cephem nucleus, an acetate residue, and an oligopeptide side chain. In order to understand the precise implication of the polyketide synthase (PKS) module in the biosynthesis of cephabacin, the genes for its core domains, ${\beta}$-ketoacyl synthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), were amplified and cloned into the pET-32b(+) expression vector. The sfp gene encoding a protein that can modify apo-ACP to its active holo-form was also amplified. The recombinant KS, AT, apo-ACP, and Sfp overproduced in the form of $His_6$-tagged fusion proteins in E. coli BL21(DE3) were purified by nickel-affinity chromatography. Formation of stable peptidyl-S-KS was observed by in vitro acylation of the KS domain with the substrate [L-Ala-L-Ala-L-Ala-L-$^3H$-Arg] tetrapeptide-S-N-acetylcysteamine, which is the evidence for the selective recognition of tetrapeptide produced by nonribosomal peptide synthetase (NRPS) in the NRPS/PKS hybrid. In order to confirm whether malonyl CoA is the extender unit for acetylation of the peptidyl moiety, the AT domain, ACP domain, and Sfp protein were treated with $^{14}C$-malonyl-CoA. The results clearly show that the AT domain is able to recognize the extender unit and decarboxylatively acetylated for the elongation of the tetrapeptide. However, the transfer of the activated acetyl group to the ACP domain was not observed, probably attributed to the improper capability of Sfp to activate apo-ACP to the holo-ACP form.

A Hadoop-based Multimedia Transcoding System for Processing Social Media in the PaaS Platform of SMCCSE

  • Kim, Myoungjin;Han, Seungho;Cui, Yun;Lee, Hanku;Jeong, Changsung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2827-2848
    • /
    • 2012
  • Previously, we described a social media cloud computing service environment (SMCCSE). This SMCCSE supports the development of social networking services (SNSs) that include audio, image, and video formats. A social media cloud computing PaaS platform, a core component in a SMCCSE, processes large amounts of social media in a parallel and distributed manner for supporting a reliable SNS. Here, we propose a Hadoop-based multimedia system for image and video transcoding processing, necessary functions of our PaaS platform. Our system consists of two modules, including an image transcoding module and a video transcoding module. We also design and implement the system by using a MapReduce framework running on a Hadoop Distributed File System (HDFS) and the media processing libraries Xuggler and JAI. In this way, our system exponentially reduces the encoding time for transcoding large amounts of image and video files into specific formats depending on user-requested options (such as resolution, bit rate, and frame rate). In order to evaluate system performance, we measure the total image and video transcoding time for image and video data sets, respectively, under various experimental conditions. In addition, we compare the video transcoding performance of our cloud-based approach with that of the traditional frame-level parallel processing-based approach. Based on experiments performed on a 28-node cluster, the proposed Hadoop-based multimedia transcoding system delivers excellent speed and quality.