DOI QR코드

DOI QR Code

Statistical Characteristics and Complexity Analysis of HEVC Encoder Software

HEVC 부호화기 소프트웨어의 통계적 특성 및 복잡도 분석

  • Ahn, Yongjo (Dept. of Computer Engineering, Kwangwoon University) ;
  • Hwang, Taejin (Dept. of Computer Engineering, Kwangwoon University) ;
  • Yoo, Sungeun (Dept. of Computer Engineering, Kwangwoon University) ;
  • Han, Woo-Jin (Dept. of Software Development and Management, Gachon University) ;
  • Sim, Donggyu (Dept. of Computer Engineering, Kwangwoon University)
  • 안용조 (광운대학교 컴퓨터공학과) ;
  • 황태진 (광운대학교 컴퓨터공학과) ;
  • 유성은 (광운대학교 컴퓨터공학과) ;
  • 한우진 (가천대학교 소프트웨어 설계.경영학과) ;
  • 심동규 (광운대학교 컴퓨터공학과)
  • Received : 2012.10.11
  • Accepted : 2012.11.26
  • Published : 2012.11.30

Abstract

In this paper, we analyzed statistical characteristics and complexity of HEVC encoder as a leading research of acceleration, optimization and parallelization. Computational complexity of the HEVC encoder is approximately twice the compression performance compared to H.264/AVC. But, the increase of encoder complexity remains a problem to be solved in the future. Before performing the research on acceleration, optimization and parallelization to reduce high complexity of HEVC encoder, we measure the complexity each module for HEVC encoder using it's reference software HM 7.1. We also measured the predicted complexity of fast HEVC encoder software, used in real applications, using HM 7.1 applying fast encoding method. The complexity is measured in terms of the operating cycle of the encoder software under the common test sequences and conditions in the Windows PC environment. In addition, we analyze statistical characteristics of HEVC encoder software according to encoding structures and limitation using coded bitstreams.

본 논문에서는 현재 표준화가 진행 중인 HEVC (high efficiency video coding) 부호화기의 고속화, 최적화, 병렬화 연구에 앞서 통계적 특성 및 복잡도 분석을 수행하였다. HEVC는 H.264/AVC에 비해 약 2배의 압축 성능을 나타내지만 부호화기 복잡도는 크게 증가하여 이는 앞으로 해결해야할 문제로 남아있다. HEVC의 높은 부호화기 복잡도를 해결하기 위한 고속화, 최적화, 병렬화 연구에 앞서, 본 논문에서는 HEVC 참조소프트웨어인 HM 7.1을 이용하여 HEVC 부호화기의 복잡도를 측정하였다. 추가적으로, 실제 응용에서 사용될 고속 HEVC 부호화기 소프트웨어에 대한 예상 복잡도를 고속 알고리듬이 적용된 HM 7.1 소프트웨어로 측정하였다. 복잡도 측정은 공통 실험 영상 및 조건을 사용하였으며 PC 환경에서 부호화기 소프트웨어의 동작 사이클을 측정하고 이를 분석하였다. 또한, 부호화를 통해 생성된 비트스트림을 이용하여 HEVC 부호화기 소프트웨어의 부호화 구조에 따른 통계적 특성과 제한적 부호화에 따른 통계적 특성에 대하여 제시하고 이를 분석한다.

Keywords

References

  1. Y. J. Ahn, W. J. Han, and D. G. Sim, "Study of decoder complexity for HEVC and AVC standards based on tool-by-tool comparison," SPIE Applications of Digital Image Processing XXXV, Proceedings of SPIE Volume 8499, Paper number 8499-32, San Diego, USA, August, 2012.
  2. F. Kossentini, N. Mahdi, H. Guermazi, H. M, Horowitz, S. Xu, B. Li, G. J. Sullivan, and J. Xu, "Informal subjective quality comparison of compression performance of HEVC working draft 5 with AVC high profile," JCTVC-H0562, 8th JCT-VC meeting, San Jose, USA, Feb, 2012.
  3. Y. Zhao, and L. Yu, "Coding efficiency comparison between HM 5.0 and JM 16.2 based on PQI, PSNR and SSIM," JCTVC-H0063, 8th JCT-VC meeting, San Jose, USA, February, 2012.
  4. B. Li, G. J. Sullivan, and J. Xu, "Compression performance of high efficiency video coding (HEVC) working draft 4," Proc. Of ISCAS, pp. 22-23, Seoul, Korea, May, 2012.
  5. R. H. Gweon, Y.-L. Lee, and J. Lim, "Early Termination of CU Encoding to Reduce HEVC Complexity," JCTVC-F045, Torino, IT, July, 2011.
  6. K. Choi, S.-H. Park, and E. S. Jang, "Coding tree pruning based CU early termination," JCTVC-F092, Torino, IT, July, 2011.
  7. J. Yang, J. Kim, K. Won, H. Lee, and B. Jeon, "Early skip detection for HEVC," JCTVC-G543, CH, November, 2011.
  8. HEVC reference software HM SVN repository "http://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-7.1".
  9. A. Fuldseth, M. Horowitz, S. Xu, A. Segall, M. Zhou, "Tiles," JCTVC-F335, Torino, Italy, July, 2011.
  10. B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, and T. Wiegand, "High efficiency video coding (HEVC) text specification draft 7," JCTVC-H1003, San Jose, USA, February, 2012.
  11. J. Chen, T. Lee, "Planar intra prediction improvement," JCTVC-F483, Torino, IT, July, 2011
  12. E. Alshina, A. Alshin, J. H. Park, J. Lou, K. Minoo, "CE3: 7 taps interpolation filters for quarter pel position MC from Samsung and Motorola Mobility," JCTVC-G778, Geneva, CH, November, 2011.
  13. A. Fuldseth, G. Bjntegaard, M. Budagavi, V. Sze, "CE10: Core transform design for HEVC," JCTVCC-G495, Geneva, CH, November, 2011.
  14. C. M. Fu, C. Y. Chen, C. Y. Tsai, Y. W. Huang, S. Lei, "CE13: Sample Adaptive Offset with LCU-Independent Decoding," JCTVC-E049, Geneva, CH, March, 2011.
  15. D. Marpe, H. Schwarz, and T. Wiegand, "Context-Based Adaptive Binary Arithmetic Coding in the H.264/AVC Video Compression Standard," IEE Transactions on Circuits and Systems for Video Technology, Vol. 13, No. 7, pp. 620-636, July, 2003. https://doi.org/10.1109/TCSVT.2003.815173
  16. F. Bossen, "Common test conditions and software reference configurations," JCTVC-G1200, Geneva, CH, November, 2011.

Cited by

  1. HEVC Encoder Optimization using Depth Information vol.19, pp.5, 2014, https://doi.org/10.5909/JBE.2014.19.5.640
  2. A Study on the Full-HD HEVC Encoder IP Design vol.52, pp.12, 2015, https://doi.org/10.5573/ieie.2015.52.12.167
  3. Fast Coding Unit Decision Algorithm Based on Region of Interest by Motion Vector in HEVC vol.53, pp.11, 2016, https://doi.org/10.5573/ieie.2016.53.11.041