• Title/Summary/Keyword: Encapsulation efficiency

Search Result 174, Processing Time 0.029 seconds

Preparation of Eudragit coated solid lipid nanoparticles (SLN) for hydrophilic drug delivery

  • Han, Sung-Chul;Yoon, Hee-Sun;Lee, Ki-Young;Kim, Yeon-Zu;Kim, Dong-Woon
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.655-659
    • /
    • 2003
  • Solid lipid nanoparticle (SLN) system has been attracted increasing attention during last few years as a potential drug delivery carrier However, the SLN have disadvantage of low encapsulation efficiency for hydrophilic drug. In this study, for increase it's encapsulation efficiency, we prepared the $Eudragit^{\circledR}$ L100-55 (eudragit) coated SLN(E-SLN) based on solvent evaporation method and melt dispersion technique, and analyzed their physicochemical properties in terms of particle size, morphology, and encapsulation efficiency. As a result, they have a ${\pm}150$ nm particle size, spherical shape, and $10^{\sim}25$ % loading efficiency. SLN consists of coconut oil as core material, ascorbic acid and okyong-san as hydrophilic drug.

  • PDF

Improvement of Anthocyanin Encapsulation Efficiency into Yeast Cell by Plasmolysis, Ethanol, and Anthocyanin Concentration Using Response Surface Methodology

  • Dong, Lieu My;Hang, Hoang Thi Thuy;Tran, Nguyen Huyen Nguyet;Thuy, Dang Thi Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.3
    • /
    • pp.267-275
    • /
    • 2020
  • Anthocyanins are antioxidant compounds susceptible to environmental factors. Anthocyanin encapsulation into yeast cells is a viable solution to overcome this problem. In this study, the optimal factors for anthocyanin encapsulation were investigated, including anthocyanin concentration, plasmolysis contraction agent, and ethanol concentration, and response surface methodology was evaluated, for the first time. Anthocyanin from Hibiscus sabdariffa L. flowers was encapsulated into Saccharomyces cerevisiae using plasmolysis contraction agent (B: 3%-20% w/v), ethanol concentration (C: 3%-20% v/v), and anthocyanin concentration (A: 0.15-0.45 g/ml). The encapsulation yield and anthocyanin loss rate were determined using a spectrometer (520 nm), and color stability evaluation of the capsules was performed at 80℃ for 30 min. The results of the study showed that these factors have a significant impact on the encapsulation of anthocyanin, in which ethanol agents have the highest encapsulation yield compared to other factors in the study. Statistical analysis shows that the independent variables (A, B, C), their squares (A2, B2, C2), and the interaction between B and C have a significant effect on the encapsulation yield. The optimized factors were anthocyanin, 0.25 g/ml; NaCl, 9.5% (w/v); and ethanol, 11% (v/v) with an encapsulation yield of 36.56% ± 0.55% and anthocyanin loss rate of 15.15% ± 0.98%; This is consistent with the expected encapsulation yield of 35.46% and loss rate of 13.2%.

Encapsulation Method of OLED with Inorganic Multi-layered Thin Films Sealed with Flat Glass (평판 유리로 봉인된 다층 무기 박막을 갖는 OLED 봉지 방법)

  • Park, Min-Kyung;Ju, Sung-Hoo;Yang, Jae-Woong;Paek, Kyeong-Kap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.905-910
    • /
    • 2011
  • To study encapsulation method for large-area organic light emitting diodes (OLEDs), red emitting OLEDs were fabricated, on which LiF and Al were deposited as inorganic protective films. And then the OLED was attached to flat glass by printing method using epoxy. In case of direct coating of epoxy onto OLED by printing method, luminance and current efficiency were remarkably decreased because of the damage to the OLED by epoxy. In case of depositing LiF and Al as inorganic protective films and then coating of epoxy onto OLED, luminance and current efficiency were not changed. OLED lifetime was more increased through inorganic protective films between OLED and flat glass than that without any encapsulation (8.8 h), i.e., 47 (LiF/Al/epoxy/glass), 62 (LiF/Al/LiF/epoxy/glass), and 84 h (LiF/Al/Al/epoxy/glass). The characteristics of OLED encapsulated with inorganic protective films (attached to flat glass) showed the possibility of application of protective films.

Evaluation of Bacillus velezensis for Biological Control of Rhizoctonia solani in Bean by Alginate/Gelatin Encapsulation Supplemented with Nanoparticles

  • Moradi-Pour, Mojde;Saberi-Riseh, Roohallah;Esmaeilzadeh-Salestani, Keyvan;Mohammadinejad, Reza;Loit, Evelin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1373-1382
    • /
    • 2021
  • Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that can increase plant growth; but due to unfavorable environmental conditions, PGPR are biologically unstable and their survival rates in soil are limited. Therefore, the suitable application of PGPR as a plant growth stimulation is one of the significant challenges in agriculture. This study presents an intelligent formulation based on Bacillus velezensis VRU1 encapsulation enriched with nanoparticles that was able to control Rhizoctonia solani on the bean. The spherical structure of the capsule was observed based on the Scanning Electron Microscope image. Results indicated that with increasing gelatin concentration, the swelling ratio and moisture content were increased; and since the highest encapsulation efficiency and bacterial release were observed at a gelatin concentration of 1.5%, this concentration was considered in mixture with alginate for encapsulation. The application of this formulation which is based on encapsulation and nanotechnology appears to be a promising technique to deliver PGPR in soil and is more effective for plants.

Study on Encapsulation Efficiency and Preparation of SLN Using Conjugated New Whitening Agent(LA-PEG) and Its Cosmetic Application (새로운 미백물질을 함유하는 SLN의 제조와 봉입효율에 관한 연구)

  • Kang, Ki-Choon;Pyo, Hyeong-Bae;Lee, Cheong-Hee;Kim, Tae-Hoon;Ma, Sang-Chol;Im, Won-Cheol;Jeong, Noh-Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.15-23
    • /
    • 2008
  • This study is on encapsulation of a new whitening agent, LA-PEG using solid lipid nanoparticle(SLN) method, one of nanoparticle preparation method. Classical method has high capsulation efficiency for hydrophobic compounds but has demerit of low capsulation efficiency($2{\sim}3%$) for hydrophilic compounds. Purpose of this study is preparation of SLN that has higher skin penetration effect compared with general liposome, and also has higher encapsulation efficiency of hydrophilic compounds. For SLN preparation, coconut oil, macadamia oil, and jojoba oil were used. As a result, SLN preparation using coconut oil(include LA-PEG) has the most high encapsulation efficiency and also has the smallest average particle size(270 nm). SLN prepared with macadamia oil and 1% of Tween 60 has the largest particle size. Base made with coconut oil and 2% of Tween 60 showed the fastest release and base made with macadamia oil and 2% of Tween 20 showed the latest release.

Effect of Nonlamellar-Prone Lipids on Protein Encapsulation in Liposomes

  • Ahn, Tae-Ho;Chi, Youn-Tae;Yun, Chul-Ho
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.956-962
    • /
    • 2009
  • We investigated the effect of two nonlamellar-prone lipids, phosphatidylethanolamine (PE) and dioleoylglycerol (DOG), on the efficiency of protein encapsulation in liposomes. When the phosphatidylcholine (PC) matrix was replaced with PE or DOG during liposome formulation, the amounts of glutathione S-transferase and bovine serum albumin entrapped in the vesicles increased with increasing PE or DOG concentration. The presence of PE and DOG synergistically affected protein entrapment. These results suggest that protein encapsulation can be enhanced by the presence of nonlamellar lipids and/or lipid-induced membrane properties.

Preparation of Resveratrol-loaded Poly($\varepsilon$-caprolactone) Nanoparticles by Oil-in-water Emulsion Solvent Evaporation Method

  • Kim, Bum-Keun;Lee, Jun-Soo;Oh, Ju-Kyoung;Park, Dong-June
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.157-161
    • /
    • 2009
  • Resveratrol-loaded poly($\varepsilon$-caprolactone) (PCL) nanoparticles were prepared by oil in water (O/W) emulsion solvent evaporation method. The morphology of the nanoparticles was evaluated using atomic force microscope (AFM), in which well-shaped and rigid nanoparticles were prepared. The mean particle size of nanoparticles prepared using only dichloromethane (DCM) ($523.5{\pm}36.7\;nm$) was larger than that prepared with a mixture of DCM and either ethanol (EtOH) ($494.5{\pm}29.2\;nm$) or acetone ($493.5{\pm}6.9\;nm$). The encapsulation efficiency of nanoparticles prepared only with DCM as dispersed phase ($78.3{\pm}7.7%$) was the highest of those prepared with solvent mixtures. An increase in the molecular weight of PCL led to an increase in encapsulation efficiency (from $78.3{\pm}7.7$ to $91.4{\pm}3.2%$). Pluronic F-127 produced the smallest mean size ($523.5{\pm}36.7\;nm$) with the narrowest particle size distribution. These results show that dispersed phase, molecular weight of wall materials, emulsion stabilizer could be important factors to affect the properties of nanoparticles.

Effect of Bovine Serum Albumin on the Stability of Methotrexate-encapsulated Liposomes

  • Kim, Chong-Kook;Kim, Han-Sung;Lee, Beum-Jin;Han, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 1991
  • The effect of bovine serum albumin (BSA) on the encapsulation efficiency and stability of liposomes containing methotrexate (MTX) having different surface charges and cholesterol contents were investigated. The encapsulation efficiency of MTX was lower and the release of MTX was faster by the addition of BSA. The leaking of MTX from lipid bilayer depends upon the BSA concentrations. These results may be derived from the interaction of BSA with lipid bilayers. The dynamic structural changes of BSA were monitored indirectly using circular dichroism spectra. Observed dynamic structural changes of BSA with liposomes are presumed to reflect the interaction of BSA with liposomes. Negatively charged liposomes have more strong interaction with BSA than neutral and positively charged liposomes. BSA attacks lipid bilayers whether it is at the inner or at the outer phase of lipid bilayer and induces leakage of entrapped MTX. Especially, negatively charged liposomes are more sensitive than others. The inclusion of cholesterol in the lipid layers inhibits the interaction of BSA with liposomes and shows protective effect against BSA-induced leakage of MTX. To endure the attacking of BSA liposomes as drug carriers should be made using cholesterol.

  • PDF

Emission Characteristics of Encapsulated Organic Light Emitting Devices Using Attaching Film and Flat Glass (접착 필름과 평판 유리를 이용하여 봉지된 유기 발광 소자의 발광 특성)

  • Lim, Su Yong;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.111-115
    • /
    • 2013
  • To study the encapsulation method for large-area organic light emitting devices (OLEDs), OLED of ITO / 2-TNATA / NPB / $Alq_3$:Rubrene / $Alq_3$ / LiF / Al structure was fabricated, which on $Alq_3$/LiF/Al as protective layer of OLED was deposited to protect the damage of OLED, and subsequently it was encapsulated using attaching film and flat glass. The current density and luminance of encapsulated OLED using attaching film and flat glass has similar characteristics compared with non-encapsulated OLED when thickness of Al as a protective layer was 1200 nm, otherwise power efficiency of encapsulated OLED was better than non-encapsulated OLED. Encapsulation process using attaching film and flat glass did not have any effects on the emission spectrum and the Commission International de L'Eclairage (CIE) coordinate. The lifetime of encapsulated OLED using attaching film and flat glass was 287 hours in 1200 nm Al thickness, which was increased according to thickness of Al protective layer, and was improved 54% compared with 186 hours in same Al thickness, lifetime of encapsulated OLED using epoxy and flat glass. As a result, it showed the improved efficiency and the long lifetime, because the encapsulation method using attaching film and flat glass could minimize the impact on OLED caused through UV hardening process in case of glass encapsulation using epoxy.

A Study on RGBY LED Light using a Vacuum Printing Encapsulation Systems Method (진공 프린팅 성형 인쇄법(VPES)을 이용한 R.G.B.Y(Red, Green, Blue, Yellow) LED 광원 연구)

  • Jang, Min-Suk;Kim, Yeoung-Woo;Shin, Gi-Hae;Park, Joung-Wook;Hong, Jin-Pyo;Song, Sang-Bin;Kim, Jae-Pil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.10-18
    • /
    • 2011
  • In order to develop highly-integrated RGBY(Red, Green, Blue, Yellow) LED light, a high thermal radiation ceramic package was manufactured, and the encapsulation process was applied with a vacuum printing encapsulation system(VPES). After the completion of vacuum printing, the shape of the encapsulation layer could be controlled by heat treatment during the curing process, and the optical power became highly increased as the encapsulation layer approached a dome shape. The optical characteristics involved in a Correlated Color Temperature(CCT), a Color Rendering Index (CRI), and the efficiency of RGBY LED light were able to be identified by the experimental designing method. Regarding the characteristics of the white light of RGBY LED light, which were measured on the basis of the aforementioned optical characteristics, CRI posted 88, CCT recorded 5,720[$^{\circ}K$], and efficiency exhibited 52[lm/W]. The chip temperature of RGBY LEDs was below 55[$^{\circ}C$] when the consumption power of LED chips was 0.1[W] for the red, 0.3[W] for the green, 0.08[W] for the blue, and 0.24[W] for the yellow. Also, the thermal resistance of the highly-integrated RGBY LED light measured by T3Ster was 2.3[K/W].