• Title/Summary/Keyword: Enabling conditions

Search Result 174, Processing Time 0.022 seconds

The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers

  • Lee, Da Jung;Yun, Sun Jin;Lee, Seong Hyun;Lim, Jung Wook
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.730-733
    • /
    • 2013
  • In this work, buffer layers with various conditions are inserted at an n/i interface in hydrogenated amorphous silicon semitransparent solar cells. It is observed that the performance of a solar cell strongly depends on the arrangement and thickness of the buffer layer. When arranging buffer layers with various bandgaps in ascending order from the intrinsic layer to the n layer, a relatively high open circuit voltage and short circuit current are observed. In addition, the fill factors are improved, owing to an enhanced shunt resistance under every instance of the introduced n/i buffer layers. Among the various conditions during the arrangement of the buffer layers, a reverse V shape of the energy bandgap is found to be the most effective for high efficiency, which also exhibits intermediate transmittance among all samples. This is an inspiring result, enabling an independent control of the conversion efficiency and transmittance.

Informatization of Telecommunication Services: Its Actual Conditions and Policy Recommendations (통신서비스의 정보화: 그 현황 및 개선 방향)

  • Cho, Chan-Sik
    • Journal of Information Management
    • /
    • v.26 no.4
    • /
    • pp.1-27
    • /
    • 1995
  • Telecommunication services are important means of information exchanges in information society, and information of them connotes the enabling of information exchanges through telecommunication services in all parts of the society. This study, on top of a theoretical foundation of the informatization of telecommunication services, examines and analyzes historical and actual conditions of the services, and tries to make some policy recommendations based on the analysis.

  • PDF

Inactivation of Zooplankton Artemia sp. Using Plasma Process (플라즈마 공정을 이용한 동물성 플랑크톤 Artemia sp. 불활성화)

  • Dong-Seog Kim;Young-Seek Park
    • Journal of Environmental Science International
    • /
    • v.32 no.3
    • /
    • pp.197-204
    • /
    • 2023
  • This study aims to inactivate Artemia sp. (Zooplankton) in ballast water through the dielectric barrier discharge (DBD) plasma process. The DBD plasma process has the advantage of enabling direct electric discharge in water and utilizing chemically active species generated by the plasma reaction. The experimental conditions for plasma reaction are as follows; high voltage of 9-22 kV, plasma reaction time of 15-600 s, and air flow rate of 0.5-5.5 L/min. The results showed that the optimal experimental conditions for Artemia sp inactivation were 16 kV, 60 s, 2.5 L/min, respectively. The concentrations of total residual oxidants and ozone generated by plasma reaction increased with an increase of in voltage and reaction time, and the concentration of generated air did not increase above a certain amount.

Optimization of Sensory Attributes of Brown Sauce added with Gelatin (젤라틴 첨가 브라운소스의 관능적 특성 최적화)

  • Choi, Soo-Keun;Lee, Jong-Pill
    • Korean journal of food and cookery science
    • /
    • v.28 no.6
    • /
    • pp.655-663
    • /
    • 2012
  • This study was carried out response surface analysis for brown sauce optimization. Three factors of heating time (10, 20, 30, 40, and 50 min), the added gelatin content (0, 4, 8, 12, and 16%) and the added tomato paste amount (0, 6, 12, 18, and 24%) were encoded into 5 levels (-2, -1, 0, 1, 2). After the central synthesis plan was set up to produce samples in 16 pre-arranged conditions and the sensory tests were conducted, the investigation on optimum level of these factors was conducted. The scope of optimum conditions for extraction was established through reading the range of reaction surfaces superimposed between those representing sensory properties such as color, flavor, taste, viscosity and overall acceptability was established. In this study, it was found out that the scope of optimum conditions for brown sauce extraction was 30 min for heating time, 9.00% for gelatin content and 11.25% for tomato paste amount. The reliability test proved the mentioned scope to have a similar value to that of the estimated scope when compared to the experimental values which was observed through experiments conducted under the same conditions as applied to values predicted through RSM program, enabling the verification of the reliability of derived regression formula.

Statistical Analysis on Weather Conditions at Chungbuk National University Observatory in Jincheon, Korea

  • Yoon, Joh-Na;Lee, Yong Sam;Kim, Chun-Hwey;Kim, Yonggi;Yim, Hong-Suh;Han, Wonyong;Jeong, Jang Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.397-405
    • /
    • 2012
  • Astronomical Observations at Chungbuk National University Observatory (CBNUO) with an 1 m telescope have begun since April 2008, and Near-Earth Space Survey observations also have been started since November 2010, with a 0.6 m wide field telescope developed by Korea Astronomy and Space Science Institute. To improve observational efficiency, we developed a weather monitoring system enabling automatic monitoring for the weather conditions and checking the status of the observational circumstances, such as dome status. We hope this weather monitoring system can be helpful to more than 100 Korean domestic observatories, including public outreach facilities. In this paper, we present the statistic analysis of the weather conditions collected at CBNUO for 3 years (2009- 2011) and comparisons were made for clear nights between using only humidity data and both humidity and cloud data.

Study of Optimal Conditions Affecting the Photothermal Effect and Fluorescence Characteristics of Indocyanine Green

  • Seo, Sung Hoon;Bae, Min Gyu;Park, Hyeong Ju;Ahn, Jae Sung;Lee, Joong Wook
    • Current Optics and Photonics
    • /
    • v.5 no.5
    • /
    • pp.554-561
    • /
    • 2021
  • Indocyanine green (ICG) is a cyanine dye that has been used in medical diagnostics based on fluorescence imaging, and in medical therapy based on the photothermal effect. It is important to systematically understand the photothermal effect and fluorescence characteristics of ICG simultaneously. By varying a number of conditions such as laser power density, laser irradiation wavelength, concentration of ICG solution, and exposure time of laser irradiation, the intensity properties of fluorescence and the temperature change induced by the photothermal effect are measured simultaneously using a charge-coupled-device camera and a thermal-imaging camera. The optimal conditions for maximizing the photothermal effect are determined, while maintaining a relatively long lifetime and high efficiency of the fluorescence for fluorescence imaging. When the concentration of ICG is approximately 50 ㎍/ml and the laser power density exceeds 1.5 W/cm2, the fluorescence lifetime is the longest and the temperature induced by the photothermal effect rapidly increases, exceeding the critical temperature sufficient to damage human cells and tissues. The findings provide useful insight into the realization of effective photothermal therapy, while also specifying the site to be treated and enabling real-time treatment monitoring.

Integrated Object Detection and Blockchain Framework for Remote Safety Inspection at Construction Sites

  • Kim, Dohyeong;Yang, Jaehun;Anjum, Sharjeel;Lee, Dongmin;Pyeon, Jae-ho;Park, Chansik;Lee, Doyeop
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.136-144
    • /
    • 2022
  • Construction sites are characterized by dangerous situations and environments that cause fatal accidents. Potential risk detection needs to be improved by continuously monitoring site conditions. However, the current labor-intensive inspection practice has many limitations in monitoring dangerous conditions at construction sites. Computer vision technology that can quickly analyze and collect site conditions from images has been in the spotlight as a solution. Nonetheless, inspection results obtained via computer vision are still stored and managed in centralized systems vulnerable to tampering with information by the central node. Blockchain has been used as a reliable and efficient decentralized information management system. Despite its potential, only limited research has been conducted integrating computer vision and blockchain. Therefore, to solve the current safety management problems, the authors propose a framework for construction site inspection that integrates object detection and blockchain network, enabling efficient and reliable remote inspection. Object detection is applied to enable the automatic analysis of site safety conditions. As a result, the workload of safety managers can be reduced with inspection results stored and distributed reliably through the blockchain network. In addition, errors or forgery in the inspection process can be automatically prevented and verified through a smart contract. As site safety conditions are reliably shared with project participants, project participants can remotely inspect site conditions and make safety-related decisions in trust.

  • PDF

A study on the development of a ship-handling simulation system based on actual maritime traffic conditions (실제 해상교통상황 기반 선박조종 시뮬레이션 시스템 개발에 관한 연구)

  • Eunkyu Lee;Jae-Seok Han;Kwang-Hyun Ko;Eunbi Park;Seong-Phil Ann
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.306-307
    • /
    • 2022
  • Recently, in the process of developing, verifying, and upgrading the e-Navigation service and autonomous navigation system, there is an increasing demand for inter-working with a ship-handling simulator that can simulate actual maritime traffic conditions. In this paper, to develop a ship-handling simulation system based on actual maritime traffic conditions, a simulation server was built, received information on the actual maritime traffic conditions from the e-Navigation linkage system, and changed to information for operating the ship-handling simulator. In order to provide simulation images to users, 3D shape modeling for trade ports, coastal ports in Korea and major type of ship were performed. The developed system will be used for the advancement of e-Navigation service, development and verification of autonomous navigation systems, by enabling simultaneous processing of more than 10,000 ships and allowing users to simulate actual maritime traffic conditions in the desired area.

  • PDF

A Viscoelasitc Finite Element Analysis of Thermal Nanoimprint Lithography Process (열-나노임프린트 공정의 점탄성 유한요소해석)

  • Kim, Nam-Woong;Kim, Kug-Weon;Sin, Hyo-Chol
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Nanoimprint lithography (NIL) is an emerging technology enabling cost-effective and high-throughput nanofabrication. To successfully imprint a nano-sized pattern, the process conditions such as temperature, pressure, and time should be appropriately selected. This starts with a clear understanding of polymer material behavior during the NIL process. In this work, the squeezing of thin polymer films into nanocavities during the thermal NIL has been investigated based upon a two-dimensional viscoelastic finite element analysis in order to understand how the process conditions affect a pattern quality. The simulations have been performed within the viscoelastic plateau region and the stress relaxation effect has been taken into account.

  • PDF

Corrosion of Copper in Anoxic Ground Water in the Presence of SRB

  • Carpen, L.;Rajala, P.;Bomberg, M.
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.147-153
    • /
    • 2018
  • Copper is used in various applications in environments favoring and enabling formation of biofilms by naturally occurring microbes. Copper is also the chosen corrosion barrier for nuclear waste in Finland. The copper canisters should have lifetimes of 100,000 years. Copper is commonly considered to be resistant to corrosion in oxygen-free water. This is an important argument for using copper as a corrosion protection in the planned canisters for spent nuclear-fuel encapsulation. However, microbial biofilm formation on metal surfaces can increase corrosion in various conditions and provide conditions where corrosion would not otherwise occur. Microbes can alter pH and redox potential, excrete corrosion-inducing metabolites, directly or indirectly reduce or oxidize the corrosion products, and form biofilms that create corrosive microenvironments. Microbial metabolites are known to initiate, facilitate, or accelerate general or localized corrosion, galvanic corrosion, and intergranular corrosion, as well as enable stress-corrosion cracking. Sulfate-reducing bacteria (SRB) are present in the repository environment. Sulfide is known to be a corrosive agent for copper. Here we show results from corrosion of copper in anoxic simulated ground water in the presence of SRB enriched from the planned disposal site.