• Title/Summary/Keyword: Emulsion evaporation

Search Result 58, Processing Time 0.03 seconds

Control of Encapsulation Efficiency and Initial Burst in Polymeric Microparticle Systems

  • Yeo, Yeon;Park, Ki-Nam
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Initial burst is one of the major challenges in protein-encapsulated microparticle systems. Since protein release during the initial stage depends mostly on the diffusional escape of the protein, major approaches to prevent the initial burst have focused on efficient encapsulation of the protein within the microparticles. For this reason, control of encapsulation efficiency and the extent of initial burst are based on common formulation parameters. The present article provides a literature review of the formulation parameters that are known to influence the two properties in the emulsion-solvent evaporation/extraction method. Physical and chemical properties of encapsulating polymers, solvent systems, polymer-drug interactions, and properties of the continuous phase are some of the influential variables. Most parameters affect encapsulation efficiency and initial burst by modifying solidification rate of the dispersed phase. In order to prevent many unfavorable events such as pore formation, drug loss, and drug migration that occur while the dispersed phase is in the semi-solid state, it is important to understand and optimize these variables.

Effect of Ratio of Polyoxalate/PLGA Microspheres on the Release Behavior of Zaltoprofen (Polyoxalate 및 PLGA 미립구의 혼합 비율별에 따른 Zaltoprofen의 방출거동)

  • Lee, Jung Keun;Kim, Kyoung Hee;Kim, Young Lae;Park, Guk Bin;Kim, Min Jeong;Kang, Su Ji;Lee, Dongwon;Khang, Gilson
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.28-33
    • /
    • 2013
  • Zaltoprofen, a propionic acid derivative non-steroidal anti-inflammatory drug, was known to have powerful inhibitory effects on acute, subacute and chronic inflammation. For initial release and sustained release, the microspheres were prepared using an emulsion-solvent evaporation method like an O/W emulsion method with varying the ratio of zaltoprofen-loaded polyoxalate (POX)/PLGA micropheres. The morphology of the microspheres was confirmed by scanning electron microscopy. The crystallinity of microspheres was analyzed by X-ray diffraction and differential scanning calorimeter. Fourier transform infrared spectroscopy was used to analyze the chemical structure of microspheres. The increased ratio of POX microspheres affected the initial drug release, and the sustained release of drug was influenced by ratio of PLGA microspheres. In this study, the initial release behavior of zaltoprofen can be controlled by the ratio of POX/PLGA microspheres.

PLGA particles and half-shells prepared by double emulsion method: characterization and release profiles of ranitidine (이중 유제 방법으로 제조된 PLGA 미립자들과 반구체:특성과 라니티딘(ranitidine)의 방출 양상)

  • Nam, Dae-Sik;Kim, Seong-Cheol;Kang, Soo-Yong;Odonchimeg, Munkhjargal;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • PLGA micro/nano particles encapsulating ranitidine as a hydrophilic model drug were prepared by the double-emulsion solvent evaporation method. Surface morphology investigation by scanning electron microscope (SEM) showed that the emulsification by sonication could produce nanoparticles, whereas microparticles were prepared using high speed homogenizer. Moreover, while nanohalf-shell structure instead of spherical nanoparticle could be produced by adding poloxamer into oil phase (MC) with PLGA 504H, the addition of poloxamer didn't change particle shape in case of PLGA 502H. On the other hand, microparticle with poloxamer had more surface pores than those without poloxamer. The size and polydispersity (PDI) of particles were determined by particle size analyzer. Effective diameters of particles were in the range of $400{\sim}800\;nm$ and $1200{\sim}3300\;nm$ in case of nanoparticles and microparticles, respectively. Encapsulation efficiencies were in the range of $1.2{\sim}2.9%$. The addition of poloxamer produced the particles with higher encapsulation efficiency. In vitro release study in phosphate buffer (pH 7.4) at $37^{\circ}C$ showed common large initial burst release. However, the relative slower release profile could be observed in case of microparticles. Poloxamer addition increased the release rate, which was thought to be related to the increased surface area of particles.

Synergistic Interaction in W/O and W/S Emulsions Stabilized by a Mixture of Powders and Surfactant (분체와 유화제의 상호 관계성에 기인한 저점도 W/O 및 W/S 에멀젼의 안정성 연구)

  • In, So Hyun;Cho, Hwanil;Kang, Nae Gyu;Han, Jong Sup;Park, Sun Gyoo;Lee, Cheon Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • Water-in-oil emulsions including water-in-ester oil and water-in-silicone oil (W/O+S) have various advantages such as blocking moisture evaporation and forming air permeable membrane. However, their applications have been limited due to the poor stability under low viscosity condition. In this study, we investigated the effect of synergistic interaction between nonionic surfactant, micro-size particles and cationic surfactant on the stability of W/O+S formulation. The stability of W/O+S emulsions was changed as a function of cationic surfactant concentration where it increased at lower concentration and then started to decrease above a critical point. Finally, emulsion phase inversion occurred at a high concentration. The results suggest that W/O+S emulsions of low viscosity ranging from 2000 to 5000 cps can be stabilized under the conditions where a nonionic surfactant, micro-size particles and a cationic surfactant are used in the range of 1.0 ~ 4.0 wt%, 2.5 wt% and 0.1 ~ 0.5 wt%, respectively.

Synthesis and Physicochemical Characterization of Biodegradable PLGA-based Magnetic Nanoparticles Containing Amoxicilin

  • Alimohammadi, Somayeh;Salehi, Roya;Amini, Niloofar;Davaran, Soodabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3225-3232
    • /
    • 2012
  • The purposes of this research were to synthesize amoxicillin-carrying magnetic nanoparticles. Magnetic nanoparticles were prepared by a chemical precipitation of ferric and ferrous chloride salts in the presence of a strong basic solution. PLGA and PLGA-PEG copolymers were prepared by ring opening polymerization of lactide (LA) and glycolide (GA) (mole ratio of LA: GA 3:1) with or without polyethylene glycol (PEG). Amoxicillin loaded magnetic PLGA and PLGA-PEG nanoparticles were prepared by an emulsion-evaporation process (o/w). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the magnetic nanoparticles have the mean diameter within the range of 65-260 nm also they were almost spherical in shape. Magnetic nanoparticles prepared with PLGA showed more efficient entrapment (90%) as compared with PLGA-PEG (48-52%) nanoparticles. In-vitro release of amoxicillin from magnetic PLGA nanoparticles showed that 78% of drug was released over 24 hours. The amount of amoxicillin released from PLGA-PEG s was higher than PLGA.

The Evaluation of Fabrication Parameters Process Effect on the Formation of Poly(lactic-co-glycolic acid) (PLGA) Microspheres

  • Bao, Trinh-Quang;Lee, Byong-Taek
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1465-1470
    • /
    • 2011
  • In this study, a poly(lactic-co-glycolic acid) (PLGA) microspheres was fabricated using emulsion solvent evaporation technique. During the procedure fabrication, some parameters process have effected on the formation of micro-carriers. The structure and morphology of micro-carriers were evaluated by SEM observation. Beside, heparin incorporated into microspheres was determined using toluidine blue method. Specifically, the effects of some parameters process such as ultrasonic levels, PLGA concentrations and freeze-dry times on the size, structure, porous formation and heparin entrapment of micro-carriers were studied carefully. We found that, the morphology and structure of carriers were influenced by the all above parameters. The diameter of the carriers varied from 20 to 400 ${\mu}M$ depending on experimental conditions. At suitable freeze-dry time, the pores were automatically formation on surface of microspheres with a significantly in the numbers of pore. After heparin incorporated porous PLGA microspheres, it was suggested that the highly heparin incorporated into porous PLGA microspheres could enhance of angiogenesis for tissue regeneration easily.

Simvastatin loaded porous poly(lactide-co-glycolide)(PLGA) microspheres as delivery systems strategies for injuring tissue and invitro study

  • Bao, Trinh-Quang;Kim, Yang-Hee;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.38.2-38.2
    • /
    • 2009
  • Regeration of natural tissuesor to create biological substitutes for defective or lost tissues and organs through the use of cells. In addition to cells and their porous, drugs are required to promote tissue regeneration. Therefore, the present studies were prepared using simvastatim loaded porous poly(lactide-co-glycolide) (PLGA) by double emulsion solvent evaporation water-in-oil-in-water technique (W/O/W) as drug delivery system strategies for injuring tissue. The resulting microspheres were evaluated for morphology, particle size, encapsulation efficiency, degradation of PLGA microspheres in vitro drug release and in vitro cell viability. Scanning electronic microscopic (SEM) showed that the porosities of the particles was changed by experimental conditions and cultured cells were attached well on porous microspheres surface. The X-ray diffraction (XRD) and differential scanning calometry (DSC) analysis indicate thatsimvastatim was highly dipersed in the microsphere at amorphousstate.

  • PDF

Characteristics of Biosurfactants produced by Bacillus sp. LSC11 (Bacillus sp. LSC11가 생산하는 biosurfactant의 특성)

  • 이상철;정연주;유주순;조영수;차인호;최용락
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.745-751
    • /
    • 2002
  • Several bacterial strains producing biosurfactants were isolated from polluted marine and soil by oil. One of the strains named LSC11 showed strong production activity of biosurfactants. This strain was identified as a Bacillus sp. LSC11 based on the morphological, biochemical, and physiological characteristics. The biosurfactant, produced by the strain, emulsified crude oil, vegetable oil, and hydrocarbons. The surface tension of the culture broth of Bacillus sp. LSC11 decreased to 32 mN/m. The crude biosurfactant was obtained from the culture broth by acid precipitation, freeze drying, solvent extraction, and evaporation. The emulsifying activity of the biosurfactant showed better than the chemically synthesized surfactant (SDS, Span40, Span 85). The biosurfactants had strong properties as an emulsifying agent and as an emulsion-stabilizing agent.

Fabrication of Ordered or Disordered Macroporous Structures with Various Ceramic Materials from Metal Oxide Nanoparticles or Precursors

  • Cho, Young-Sang;Moon, Jun-Hyuk;Kim, Young-Kuk;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.347-358
    • /
    • 2011
  • Two different schemes were adopted to fabricate ordered macroporous structures with face centered cubic lattice of air spheres. Monodisperse polymeric latex suspension, which was synthesized by emulsifier-free emulsion polymerization, was mixed with metal oxide ceramic nanoparticles, followed by evaporation-induced self-assembly of the mixed hetero-colloidal particles. After calcination, inverse opal was generated during burning out the organic nanospheres. Inverse opals made of silica or iron oxide were fabricated according to this procedure. Other approach, which utilizes ceramic precursors instead of nanoparticles was adopted successfully to prepare ordered macroporous structure of titania with skeleton structures as well as lithium niobate inverted structures. Similarly, two different schemes were utilized to obtain disordered macroporous structures with random arrays of macropores. Disordered macroporous structure made of indium tin oxide (ITO) was obtained by fabricating colloidal glass of polystyrene microspheres with low monodispersity and subsequent infiltration of the ITO nanoparticles followed by heat treatment at high temperature for burning out the organic microspheres. Similar random structure of titania was also fabricated by mixing polystyrene building block particles with titania nanoparticles having large particle size followed by the calcinations of the samples.

Development of Poly(D,L-lactic acid) Microspheres Containing Lorazepam (로라제팜을 함유한 poly(D,L-lactic acid) 마이크로스피어 개발)

  • Choi, Han-Gon;Yoo, Bong-Kyu;Rhee, Jong-Dal;Kim, Jung-Ae;Kwon, Tae-Hyub;Woo, Jong-Soo;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.175-184
    • /
    • 2006
  • Poly(D,L-lacic acid)(PLA) microshperes containing loazepam were prepared by a solvent-emulsion evaporation method and their release patterns were investigated in vitro. Various batches of microspheres with different size and drug content were obtained by changing the ratio of lorazepam to PLA, PLA concentration in the dispersed phase and stirring rate. Rod-like lorazepam crystals on microsphere surface, which were released rapidly and could act as a loading dose, were observed with increasing drug content. The release rate was increased with increase in drug contents and decrease in the molecular weight of PLA. The release rate of lorazepam for long-acting injectable delivery system in vitro, which would aid in Predicting in vivo release Profile, could be controlled by properly optimizing various factors affecting characteristics of microspheres.