• 제목/요약/키워드: Empirical model decomposition

검색결과 90건 처리시간 0.027초

Financial Flexibility on Required Returns: Vector Autoregression Return Decomposition Approach

  • YIM, Sang-Giun
    • 산경연구논집
    • /
    • 제11권5호
    • /
    • pp.7-16
    • /
    • 2020
  • Purpose: Prior studies empirically examine how financial flexibility is related to required returns by using realized returns and considering cash holdings as net debts, but they fail to find consistent results. Conjecturing that inappropriate proxy of required returns and aggregation of cash and debts caused the inconsistent results, this study revisits this topic by using a refined proxy of required returns and separating cash holdings from debts. Research design, data and methodology: This study uses a multivariate regression model to investigate the relationship between required returns on cash holdings and financial leverage. The required returns are estimated using the return decomposition method by vector autoregression model. Empirical tests use US stock market data from1968 to 2011. Results: Empirical results reveal that both cash holdings and leverage are positively related to required returns. The positive relation is stronger in economic downturns than in economic upturns. Conclusions: Three major findings are drawn. First, risky firms prefer large cash balance. Second, information shocks in the realized returns caused failure of prior studies to find consistent positive relationship between leverage and realized returns. Third, cash and leverage are related to required returns in the same direction; therefore, cash cannot be considered as negative debts.

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE

  • Peng, Lingling
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.139-147
    • /
    • 2020
  • The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.

Bivariate Oscillation Model for Surrogating Climate Change Scenarios in the LCRR basin

  • Lee, Taesam;Ouarda, Taha;Ahn, Yujin
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.69-69
    • /
    • 2021
  • From the unprecedented 2011 spring flood, the residens reside by Lake Champlain and Richelieu River encountered enormous damages. The International Joint Committee (IJC) released the Lake Champlain-Richelieu River (LCRR) Plan of Study (PoS). One of the major tasks for the PoS is to investigate the possible scenarios that might happen in the LCRR basin based on the stochastic simulation of the Net Basin Supplies that calculates the amount of flow into the lake and the river. Therefore, the current study proposed a novel apporach that simulate the annual NBS teleconnecting the climate index. The proposed model employed the bivariate empirical decomposition to contamporaneously model the long-term evolution of nonstationary oscillation embeded in the annual NBS and the climate signal (here, Artic Oscillation: AO). In order to represent the variational behavior of NBS correlation structure along with the temporal revolution of the climate index, a new nonstationary parameterization concept is proposed. The results indicate that the proposed model is superior performance in preserving long and short temporal correlation. It can even preserve the hurst coefficient better than any other tested models.

  • PDF

Prediction of Thermal Decomposition Temperature of Polymers Using QSPR Methods

  • Ajloo, Davood;Sharifian, Ali;Behniafar, Hossein
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.2009-2016
    • /
    • 2008
  • The relationship between thermal decomposition temperature and structure of a new data set of eighty monomers of different polymers were studied by multiple linear regression (MLR). The stepwise method was used in order to variable selection. The best descriptors were selected from over 1400 descriptors including; topological, geometrical, electronic and hybrid descriptors. The effect of number of descriptors on the correlation coefficient (R) and F-ratio were considered. Two models were suggested, one model having four descriptors ($R^2$ = 0.894, $Q^2_{cv}$ = 0.900, F = 172.1) and other model involving 13 descriptors ($R^2$ = 0.956, $Q^2_{cv}$ = 0.956, F = 125.4).

Forecasting Bulk Freight Rates with Machine Learning Methods

  • Lim, Sangseop;Kim, Seokhun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.127-132
    • /
    • 2021
  • 본 논문은 건화물시장과 탱커시장의 운임지수 예측에 관하여 머신러닝을 적용하였으며 신호분해법인 웨이블릿 분해와 EMD분해를 데이터 전처리 과정에 반영하여 시간의 영역의 정보와 주파수 영역의 정보를 모두 반영할 수 있는 운임예측모형을 구축하였다. 건화물 시장의 경우 웨이블릿으로 분해한 예측모형이 우수하였으며 탱커시장의 EMD분해로 예측한 모형이 우수하였으며 실무적으로 각 운송시장 참여자들에게 새로운 단기예측 방법론을 제시하였다. 이러한 연구는 운송시장에서 양적으로 가장 중요한 건화물 시장과 탱커시장에 대한 다양한 예측방법론을 확대하고 새로운 방법론을 제시하였다는 측면에서 중요하며, 변동성이 큰 운임시장에서 과학적인 의사결정 방법에 대한 실무적인 요구를 반영할 수 있을 뿐만 아니라 가장 빈번한 스팟거래에 합리적인 의사결정이 이뤄질 수 있는 기초가 될 것으로 기대된다.

회전 블레이드의 크랙 발생 예측을 위한 은닉 마르코프모델을 이용한 해석 (Crack Detection of Rotating Blade using Hidden Markov Model)

  • 이승규;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.99-105
    • /
    • 2009
  • Crack detection method of a rotating blade was suggested in this paper. A rotating blade was modeled with a cantilever beam connected to a hub undergoing rotating motion. The existence and the location of crack were able to be recognized from the vertical response of end tip of a rotating cantilever beam by employing Discrete Hidden Markov Model (DHMM) and Empirical Mode Decomposition (EMD). DHMM is a famous stochastic method in the field of speech recognition. However, in recent researches, it has been proved that DHMM can also be used in machine health monitoring. EMD is the method suggested by Huang et al. that decompose a random signal into several mono component signals. EMD was used in this paper as the process of extraction of feature vectors which is the important process to developing DHMM. It was found that developed DHMMs for crack detection of a rotating blade have shown good crack detection ability.

  • PDF

Identification of flutter derivatives of bridge decks using stochastic search technique

  • Chen, Ai-Rong;Xu, Fu-You;Ma, Ru-Jin
    • Wind and Structures
    • /
    • 제9권6호
    • /
    • pp.441-455
    • /
    • 2006
  • A more applicable optimization model for extracting flutter derivatives of bridge decks is presented, which is suitable for time-varying weights for fitting errors and different lengths of vertical bending and torsional free vibration data. A stochastic search technique for searching the optimal solution of optimization problem is developed, which is more convenient in understanding and programming than the alternate iteration technique, and testified to be a valid and efficient method using two numerical examples. On the basis of the section model test of Sutong Bridge deck, the flutter derivatives are extracted by the stochastic search technique, and compared with the identification results using the modified least-square method. The Empirical Mode Decomposition method is employed to eliminate noise, trends and zero excursion of the collected free vibration data of vertical bending and torsional motion, by which the identification precision of flutter derivatives is improved.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

Method for Feature Extraction of Radar Full Pulses Based on EMD and Chaos Detection

  • Guo, Qiang;Nan, Pulong
    • Journal of Communications and Networks
    • /
    • 제16권1호
    • /
    • pp.92-97
    • /
    • 2014
  • A novel method for extracting frequency slippage signal from radar full pulse sequence is presented. For the radar full pulse sequence received by radar interception receiver, radio frequency (RF) and time of arrival (TOA) of all pulses constitute a two-dimensional information sequence. In a complex and intensive electromagnetic environment, the TOA of pulses is distributed unevenly, randomly, and in a nonstationary manner, preventing existing methods from directly analyzing such time series and effectively extracting certain signal features. This work applies Gaussian noise insertion and structure function to the TOA-RF information sequence respectively such that the equalization of time intervals and correlation processing are accomplished. The components with different frequencies in structure function series are separated using empirical mode decomposition. Additionally, a chaos detection model based on the Duffing equation is introduced to determine the useful component and extract the changing features of RF. Experimental results indicate that the proposed methodology can successfully extract the slippage signal effectively in the case that multiple radar pulse sequences overlap.

공공성을 고려한 열차용량 할당 (Train-Fleet Assignment based on Public Interests)

  • 오석문;손무성;최인찬;최인상
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.602-609
    • /
    • 2005
  • In this paper, we consider the train-fleet assignment problem to determine fleet assignment and seat allocation synchronously. An integer programming model of the problem and a decomposition-based solution approach are developed to handle short-term period deterministic orgin-destination demands. The primary objective used in the developed model is to maximize the total number of passengers transported during peak load periods, such as Chuseok national holiday period. Thus, in developing the model we choose to profit-pursuing system. We also show how the proposed model can be readily modified to incorporate profit-maximization. Using the empirical data sets provided by a Korean railroad company, we have tested the proposed solution approach and carried out various comparison analyses by varying traffic demand patterns and train schedules. The computational experiments reveal that the proposed solutions approach produces high quality solutions in reasonable computation time.