Browse > Article
http://dx.doi.org/10.5303/JKAS.2020.53.6.139

SUNSPOT AREA PREDICTION BASED ON COMPLEMENTARY ENSEMBLE EMPIRICAL MODE DECOMPOSITION AND EXTREME LEARNING MACHINE  

Peng, Lingling (School of Artificial Intelligence, Chongqing University of Arts and Sciences)
Publication Information
Journal of The Korean Astronomical Society / v.53, no.6, 2020 , pp. 139-147 More about this Journal
Abstract
The sunspot area is a critical physical quantity for assessing the solar activity level; forecasts of the sunspot area are of great importance for studies of the solar activity and space weather. We developed an innovative hybrid model prediction method by integrating the complementary ensemble empirical mode decomposition (CEEMD) and extreme learning machine (ELM). The time series is first decomposed into intrinsic mode functions (IMFs) with different frequencies by CEEMD; these IMFs can be divided into three groups, a high-frequency group, a low-frequency group, and a trend group. The ELM forecasting models are established to forecast the three groups separately. The final forecast results are obtained by summing up the forecast values of each group. The proposed hybrid model is applied to the smoothed monthly mean sunspot area archived at NASA's Marshall Space Flight Center (MSFC). We find a mean absolute percentage error (MAPE) and a root mean square error (RMSE) of 1.80% and 9.75, respectively, which indicates that: (1) for the CEEMD-ELM model, the predicted sunspot area is in good agreement with the observed one; (2) the proposed model outperforms previous approaches in terms of prediction accuracy and operational efficiency.
Keywords
Sun: sunspots; methods: data analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, H., & Li, G. 2019, Extreme Learning Machine Cox Model for High-dimensional Survival Analysis, Statist. Medicine, 38, 2139   DOI
2 Warren, H. P., Emmert, J. T., & Crump, N. A. 2017, Linear Forecasting of the F 10.7 Proxy for Solar Activity, Space Weather, 15, 1039   DOI
3 Li, G., & Wang, S. 2017, Sunspot Time-series Prediction Based on Complementary Ensemble Empirical Mode Decomposition and Wavelet Neural Network, MPE, 2017, 1
4 Liu, H., Liu, C., Wang, J. T., & Wang, H. 2019, Predicting Solar Flares Using a Long Short-term Memory Network, ApJ, 877, 121   DOI
5 Macario-Rojas, A., Smith, K. L., & Roberts, P. C. 2018, Solar Activity Simulation and fForecast with a Fluxtransport Dynamo, MNRAS, 479, 3791   DOI
6 Miao, J., Wang, X., Ren, T. L., & Li, Z. T. 2020, Prediction Verification of Solar Cycles 18-24 and a Preliminary Prediction of the Maximum Amplitude of Solar Cycle 25 Based on the Precursor Method, RAA, 20, 4
7 Miller, T. H., Gallidabino, M. D., Macrae, J. R., et al. 2019, Prediction of Bioconcentration Factors in Fish and Invertebrates Using Machine Learning, Sci. Total Environ., 648, 80   DOI
8 Yeh, J. R., Shieh, J. S., & Huang, N. E. 2010, Complementary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method, AADA, 2, 135
9 Pala, Z., & Atici, R. 2019, Forecasting Sunspot Time Series Using Deep Learning Methods, Sol. Phys., 294, 50   DOI
10 Pesnell, W. D.,& Schatten, K. H. 2018, An Early Prediction of the Amplitude of Solar Cycle 25, Sol. Phys., 293, 112   DOI
11 Ravindra, B., & Javaraiah, J. 2015, Hemispheric Asymmetry of Sunspot Area in Solar Cycle 23 and Rising Phase of solar Cycle 24: Comparison of Three Data Sets, New Astron., 39, 55   DOI
12 Saadi, S., & Chaker, A. 2018, A Numerical Simulation Approach for Sunspot Area Calculation, ETASR, 8, 3013
13 Sarp, V., Kilcik, A., Yurchyshyn, V., et al. 2018, Prediction of Solar Cycle 25: A Non-linear Approach, MNRAS, 481, 2981   DOI
14 Stenflo, J. O. 2017, History of Solar Magnetic Fields since George Ellery Hale, SSR, 210, 5
15 Sukharev, A. L., Ryabov, M. I. & Donskikh, G. I. 2016, Predicting Changes in the Radio Emission Fluxes of Extragalactic Sources, Astrophys., 59, 213   DOI
16 Tang, J. 2015, Application of the Grey Topological Theory in the Prediction of Yearly Mean Sunspot Numbers, ChA&A, 39, 45
17 Tang, L., Dai, W., Yu, L., & Wang, S. 2015, A Novel CEEMD-based EELM Ensemble Learning Paradigm for Crude Oil Price Forecasting, IJITDM, 14, 141
18 Tang, L., Wu, Y., & Yu, L. 2018, A randomized-algorithmbased Decomposition Ensemble Learning Methodology for Energy Price Forecasting, Energy, 157,526   DOI
19 Vorobeva, E. 2019, Notes on the Correlation between Sudden Stratospheric Warmings and Solar Activity, ANGEO, 37, 375
20 Deng, L. H., Xiang, Y. Y., Qu, Z. N., & An, J. M. 2016, Systematic Regularity of Hemispheric Sunspot Areas over the Past 140 Years, AJ, 151, 70   DOI
21 Deng H., Mei Y., & Wang F. 2020, Periodic Variation and Phase Analysis of Grouped Solar Flare with Sunspot Activity, RAA, 20, 022
22 Ding, L. G., Lan, R. S., Jiang, Y., & Peng, J. D. 2012, Prediction of the Smoothed Monthly Mean Sunspot Area Based on Neural Network, Trans. Atmosph. Sci., 35, 508
23 Hamid, R. H., & Marzouk, B. A. 2018, Forecasting the Peak of the Present Solar Activity Cycle 24, NRIAG-JAG, 7, 15
24 Donskikh, G. I., Ryabov, M. I., Sukharev, A. L., & Aller, M. 2016, Singular-spectrum Analysis and Wavelet Analysis of the Variability of the Extragalactic Radio Sources 3C 120 and CTA 102, Astrophys., 59, 199   DOI
25 Florios, K., Kontogiannis, I., Park, S. H., et al. 2018, Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning, Sol. Phys., 293, 28   DOI
26 Gong, B. M., Wang, W. B., & Zhao, P. 2014, EMD-FSVM Prediction for Nonstationary Time Series, Computer Sci., 041, 57
27 Gopasyuk, O. S. 2017, Magnetic Field of Sunspots during the Rising Phase of Activity Cycle 24, Astrophys., 60, 90   DOI
28 Guo, Y., Pariat, E., Valori, G., et al. 2017, Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. III. Twist Number Method, ApJ, 840, 40   DOI
29 Hathaway, D. H. 2015, The Solar Cycle, Living Rev. Sol. Phys., 12, 4   DOI
30 Huang, N. E., Shen, Z., Long, S. R., et al. 1998, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, Proc. Roy. Soc. London A, 454, 903   DOI
31 Huang, G. B., Zhou, H., Ding, X., & Zhang, R. 2012, Extreme Learning Machine for Regression and Multiclass Classification, IEEE Transactions on Systems Man & Cybernetics Part B, 42, 513   DOI
32 Inceoglu, F., Simoniello, R., Arlt, R., & Rempel, M. 2019, Constraining Non-linear Dynamo Models Using Quasibiennial Oscillations from Sunspot Area Data, A&A, 625, A117   DOI
33 Alejandro, M. R., Smith, K. L., & Roberts, P. C. E. 2018, Solar Activity Simulation and Forecast with a Fluxtransport Dynamo, MNRAS, 479, 3791   DOI
34 Jeong, E. J., Lee, J. Y., Moon, Y. J., & Park, J. 2014, Forecast of Solar Proton Events with NOAA Scales based on Solar X-ray Flare Data Using Neural Network, JKAS, 47, 209
35 Kuzanyan, K. M., Safiullin, N., Kleeorin, N., et al. 2019, Large-Scale Properties of the Tilt of Sunspot Groups and Joy's Law Near the Solar Equator, Astrophys. 62, 261   DOI
36 Labonville, F., Charbonneau, P., & Lemerle, A. 2019, A Dynamo-based Forecast of Solar Cycle 25, Sol. Phys., 294, 82   DOI
37 Lee, J. Y., Moon, Y. J., Kim, K. S., et al. 2007, Prediction of Daily Maximum X-ray Flux Using Multilinear Regression and Autoregressive Time-series Methods, JKAS, 40, 99
38 Li, F. F. , Wang, S. Y., & Wei, J. H. 2018, Long Term Rolling Prediction Model for Solar Radiation Combining Empirical Mode Decomposition (EMD) and Artificial Neural Network (ANN) techniques, JRSE, 10, 013704
39 Andreeva, O.A., Abramenko, V.I. & Malaschuk, V.M. 2020, Coronal Holes during the Period of Maximum Asymmetry in the 24th Solar Activity Cycle, Astrophys., 63, 114   DOI
40 Bhowmik, P., & Nandy, D. 2018, Prediction of the Strength and Timing of Sunspot Cycle 25 Reveal Decadal-scale Space Environmental Conditions, Nat. Commun., 9, 1   DOI
41 Bruevich, E. A., & Bruevich, V. V. 2018, Powerful Solar Flares in September 2017. Comparison with the Largest Flares in Cycle 24, Astrophys., 61, 241   DOI
42 Chang, H. Y. 2015, Latitudinal Distribution of Sunspots and Duration of Solar Cycles, JKAS, 48, 325
43 Abdel-Rahman, H. I., & Marzouk, B. A. 2018, Statistical Method to Predict the Sunspots Number, NRIAG-JAG, 7, 175
44 Akhavan-Amjadi, M. 2020, Fetal Electrocardiogram Modeling Using Hybrid Evolutionary Firefly Algorithm and Extreme Learning Machine, MSSP, 31, 117
45 Chae, J., & Kim, Y. H. 2017, Performance of the Autoregressive Method in Long-term Prediction of Sunspot Number, JKAS, 50, 21
46 Wu, Z., & Huang, N. E. 2009, Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method, AADA, 1, 1
47 Cho, I. H., Bong, S. C., Cho, K. S., et al. 2014, Statistical Study on Personal Reduction Coefficients of Sunspot Numbers since 1981, JKAS, 47, 255
48 Covas, E., Peixinho, N., & Fernandes, J. 2019, Neural Network Forecast of the Sunspot Butterfly Diagram, Sol. Phys., 294, 24   DOI
49 Dean, P. W.,& Schatten, K. H.. 2018, An Early Prediction of the Amplitude of Solar Cycle 25, Sol. Phys., 293, 112   DOI
50 Wilson, R. M. 2016, Sunspot Area in Relation to the Newly Revised Sunspot Number, JAAS, 87, 146
51 Yadav, H. K., Pal, Y., & Tripathi, M. M. 2020, Short-term PV Power Forecasting Using Empirical Mode Decomposition in Integration with Back-propagation Neural Network, JIOS, 41, 25