• Title/Summary/Keyword: Empirical likelihood

검색결과 193건 처리시간 0.025초

Goodness-of-fit Test for the Weibull Distribution Based on Multiply Type-II Censored Samples

  • Kang, Suk-Bok;Han, Jun-Tae
    • Communications for Statistical Applications and Methods
    • /
    • 제16권2호
    • /
    • pp.349-361
    • /
    • 2009
  • In this paper, we derive the approximate maximum likelihood estimators of the shape parameter and the scale parameter in a Weibull distribution under multiply Type-II censoring by the approximate maximum likelihood estimation method. We develop three modified empirical distribution function type tests for the Weibull distribution based on multiply Type-II censored samples. We also propose modified normalized sample Lorenz curve plot and new test statistic.

On Asymptotic Properties of a Maximum Likelihood Estimator of Stochastically Ordered Distribution Function

  • Oh, Myongsik
    • Communications for Statistical Applications and Methods
    • /
    • 제20권3호
    • /
    • pp.185-191
    • /
    • 2013
  • Kiefer (1961) studied asymptotic behavior of empirical distribution using the law of the iterated logarithm. Robertson and Wright (1974a) discussed whether this type of result would hold for a maximum likelihood estimator of a stochastically ordered distribution function; however, we show that this cannot be achieved. We provide only a partial answer to this problem. The result is applicable to both estimation and testing problems under the restriction of stochastic ordering.

Minimum Hellinger Distance Bsed Goodness-of-fit Tests in Normal Models: Empirical Approach

  • Dong Bin Jeong
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.967-976
    • /
    • 1999
  • In this paper we study the Hellinger distance based goodness-of-fit tests that are analogs of likelihood ratio tests. The minimum Hellinger distance estimator (MHDE) in normal models provides an excellent robust alternative to the usual maximum likelihood estimator. Our simulation results show that the Hellinger deviance test (Simpson 1989) based goodness-of-fit test is robust when data contain outliers. The proposed hellinger deviance test(Simpson 1989) is a more direcct method for obtaining robust inferences than an automated outlier screen method used before the likelihood ratio test data analysis.

  • PDF

Choice of the Kernel Function in Smoothing Moment Restrictions for Dependent Processes

  • Lee, Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.137-141
    • /
    • 2009
  • We study on selecting the kernel weighting function in smoothing moment conditions for dependent processes. For hypothesis testing in Generalized Method of Moments or Generalized Empirical Likelihood context, we find that smoothing moment conditions by Bartlett kernel delivers smallest size distortions based on empirical Edgeworth expansions of the long-run variance estimator.

Reexamination of Estimating Beta Coecient as a Risk Measure in CAPM

  • Phuoc, Le Tan;Kim, Kee S.;Su, Yingcai
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제5권1호
    • /
    • pp.11-16
    • /
    • 2018
  • This research examines the alternative ways of estimating the coefficient of non-diversifiable risk, namely beta coefficient, in Capital Asset Pricing Model (CAPM) introduced by Sharpe (1964) that is an essential element of assessing the value of diverse assets. The non-parametric methods used in this research are the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator). The Jackknife, the resampling technique, is also employed to validate the results. According to finance literature and common practices, these coecients have often been estimated using Ordinary Least Square (LS) regression method and monthly return data set. The empirical results of this research pointed out that the robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) performed much better than Ordinary Least Square (LS) in terms of eciency for large-cap stocks trading actively in the United States markets. Interestingly, the empirical results also showed that daily return data would give more accurate estimation than monthly return data in both Ordinary Least Square (LS) and robust Least Trimmed Square (LTS) and Maximum likelihood type of M-estimator (MM-estimator) regressions.

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제25권4호
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

An Alternative Unit Root Test Statistic Based on Least Squares Estimator

  • Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.639-647
    • /
    • 2002
  • Efforts to obtain more power for unit root tests have continued. Pantula at el.(1994) compared empirical powers of several unit root test statistics and addressed that the weighted symmetric estimator(WSE) and the unconditional maximum likelihood estimator(UMLE) are the best among them. One can easily see that the powers of these two statistics are almost the same. In this paper we explain a connection between WSE and UMLE and suggest a unit root test statistic which may explain the connection between them.

Laplace-Metropolis알고리즘에 의한 다항로짓모형의 변수선택에 관한 연구 (Laplace-Metropolis Algorithm for Variable Selection in Multinomial Logit Model)

  • 김혜중;이애경
    • 품질경영학회지
    • /
    • 제29권1호
    • /
    • pp.11-23
    • /
    • 2001
  • This paper is concerned with suggesting a Bayesian method for variable selection in multinomial logit model. It is based upon an optimal rule suggested by use of Bayes rule which minimizes a risk induced by selecting the multinomial logit model. The rule is to find a subset of variables that maximizes the marginal likelihood of the model. We also propose a Laplace-Metropolis algorithm intended to suggest a simple method forestimating the marginal likelihood of the model. Based upon two examples, artificial data and empirical data examples, the Bayesian method is illustrated and its efficiency is examined.

  • PDF

NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION OF A CONCAVE RECEIVER OPERATING CHARACTERISTIC CURVE VIA GEOMETRIC PROGRAMMING

  • Lee, Kyeong-Eun;Lim, Johan
    • 대한수학회보
    • /
    • 제48권3호
    • /
    • pp.523-537
    • /
    • 2011
  • A receiver operating characteristic (ROC) curve plots the true positive rate of a classier against its false positive rate, both of which are accuracy measures of the classier. The ROC curve has several interesting geometrical properties, including concavity which is a necessary condition for a classier to be optimal. In this paper, we study the nonparametric maximum likelihood estimator (NPMLE) of a concave ROC curve and its modification to reduce bias. We characterize the NPMLE as a solution to a geometric programming, a special type of a mathematical optimization problem. We find that the NPMLE is close to the convex hull of the empirical ROC curve and, thus, has smaller variance but positive bias at a given false positive rate. To reduce the bias, we propose a modification of the NPMLE which minimizes the $L_1$ distance from the empirical ROC curve. We numerically compare the finite sample performance of three estimators, the empirical ROC curve, the NMPLE, and the modified NPMLE. Finally, we apply the estimators to estimating the optimal ROC curve of the variance-threshold classier to segment a low depth of field image and to finding a diagnostic tool with multiple tests for detection of hemophilia A carrier.

Goodness-of-fit test for the logistic distribution based on multiply type-II censored samples

  • Kang, Suk-Bok;Han, Jun-Tae;Cho, Young-Seuk
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권1호
    • /
    • pp.195-209
    • /
    • 2014
  • In this paper, we derive the estimators of the location parameter and the scale parameter in a logistic distribution based on multiply type-II censored samples by the approximate maximum likelihood estimation method. We use four modified empirical distribution function (EDF) types test for the logistic distribution based on multiply type-II censored samples using proposed approximate maximum likelihood estimators. We also propose the modified normalized sample Lorenz curve plot for the logistic distribution based on multiply type-II censored samples. For each test, Monte Carlo techniques are used to generate the critical values. The powers of these tests are also investigated under several alternative distributions.