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Minimum Hellinger Distance Based Goodness—-of—fit Tests in
Normal Models: Empirical Approach

Dong Bin Jeong!l

Abstract

In this paper we study the Hellinger distance based goodness-of-fit tests that are
analogs of likelihood ratio tests. The minimum Hellinger distance estimator (MHDE)
in normal models provides an excellent robust alternative to the usual maximum
likelihood estimator. Our simulation results show that the Hellinger deviance test
(Simpson 1989) based goodness-of-fit test is robust when data contain outliers. The
proposed Hellinger deviance test (Simpson 1989) is a more direct method for obtaining
robust inferences than an automated outlier screen method used before the likelihood
ratio test data analysis.

1. Introduction

The likelihood ratio tests (Neyman and Pearson 1928, Wilks 1938) used widely for testing in
parametric problems have certain asymptotic optimality properties but are not, in general,
robust when data contain outliers. For a careful data analysis the dataset need to be screened
for anomalous data points prior to an application of likelihood ratio tests. Simpson (1989)
proposed a more direct procedure for robust inferences than the method of automated outlier
screening and then using the likelihood based test. Simpson’s Hellinger deviance tests are
defined as analogs of likelihood ratio tests, and they are robust under data contamination and
asymptotically equivalent to the likelihood ratio tests under local parametric alternatives.
Before Simpson’s (1989) work, robust versions of Wald (1943) tests and the Rao (1948) tests
were studied by many authors in various settings (see Beran 1981; Hampel, Ronchetti,
Rousseeuw and Stahel 1986).

The Hellinger deviance test is based on the minimum Hellinger distance estimator (MHDE)
which is first-order efficient, yet has certain robustness properties (See Beran 1977; Tamura
and Boos 1986; Simpson 1987). The M-estimation based robust procedures attain robustness
at the cost of first order efficiency (Hampel, Ronchetti, Ronsseeuw and Stahel 1986). For the
discrete models, Lindsay (1994) showed how to create a class of density based distances
called disparities in order to produce estimators that are robust and the first order efficient (or
even second order efficient) at the model. The class of disparities includes the Hellinger
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distance (HD) as a member. The rest of this paper is organized as follows. In Section 2 we
provide a review of minimum Hellinger distance estimation for continuous models. Hellinger
deviance test is described in Section 3. The simulation scheme is laid out in Section 4 and
the results are discussed in Section 5. Concluding remarks are provided in Section 6.

2. The Minimum Hellinger Distance Estimation (MHDE)

Suppose that we have a random sample (X, X,,...,X,) from a parametric class of

distributions T g ={Fy, 6= @}, where O is a subset of R’ Assume that the family of
distributions {F} is dominated and f; represents the corresponding density for F, The
density based minimum disparity estimates (Lindsay 1994) can be computed by minimizing a
nonnegative measure of discrepancy o, between a nonparametric density estimate f’; and

the model density f, defined by
ocl B 10= [ G(3(F,, 0.%)dF o(x), @1

where G is a real-valued three times differentiable, strictly convex function G on[—1, o)
with G(0) = 0, and

8 F, 0.2) = [ 75(2) = fo(x) 1/ fo( %)

denote the “"Pearson” residual at the value x, which depends on the data and the parameter 4.
For simplicity of notation, we will sometimes write &(%,, 8,x) simply as &(x). For data from

a continuous distribution, one can use a nonparametric kernel density estimator defined by

A= [w(sy, h)dF (),

where w is smooth family of kernel functions like the normal densities with mean y and

standard deviation #,, F, is the empirical distribution function. Following Beran’'s (1977)
approach one will let the bandwidth #%,—0 as n—o0.

The value of @ that minimizes (2.1) is called the minimum disparity estimator. The
function G(8)=1[(8+1)*—1)? produces the squared HD whereas G(8)=(8+1) log(s+1)
generates the likelihood disparity whose minimizer is the MLE of 6.

Let ¥ represent the gradient with respect to 4. Under differentiability of the model, the

minimum disparity estimating equation takes the form
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~Voe= [ AR VF(0)=0
where

A(O)=(s+DIG(H] - G(8)

and G(8) denotes the first derivative of G(68). The function A(J), peculiar to the disparity,
is an increasing function on [ —1, o) and can be standardized, without changing the estimates
produced by the disparity, so that for the standardized A(8) we have A(0) = 0 and A(0)=1,
where A(8) denotes the first derivative of A(S). This standardized function A(8) is called
the residual adjustment function (RAF) of the disparity and determines most of the theoretical
properties of the estimators. For the likelihood disparity the RAF is A(8 =4 and is already

standardized. To achieve the above mentioned standardization one multiplies the squared HD
by a factor of two to get

A(8)=2[ (6+D"—11].

For continuous models, Basu and Lindsay (1994) obtained asymptotically fully efficient and
robust minimum disparity estimators by applying the same smoothing to the model density fg

that is applied to the data to define

Folx)= f w(xy, h)dF {y)

with F, ¢ being the corresponding distribution function. To obtain the estimator of @ for a

disparity measure pg, Basu and Lindsay minimize

Falx) = 7o)

ZEIR

ool T T = [ G202

with respect to & by Kkeeping the bandwidth £, of the kernel function constant. In their

approach £,(x) is an unbiased estimator of f,(x), and the minimum disparity estimators are
robust and in general consistent for a fixed value of the bandwidth of the kernel function.
One does not need to let %, go to zero as sample size n increases, as is usually done. In
this approach there is no loss in efficiency due to the smoothing of the model, if suitable
kernels called transparent kernels, like the normal kernel for. the normal model, are used

(Basu and Lindsay 1994; Basu and Sarkar 1994). If, however, a transparent kernel is not
available for use, the minimum disparity estimators are asymptotically normal, but no longer
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enjoy full asymptotic efficiency. To overcome this problem for the HD estimation procedure,
combining the ideas of Beran (1977), Tamura and Boos (1986) and Lindsay (1994), establish
the asymptotic efficiency and robustness of the MHDE, irrespective of the transparency of the
kernel, obtained by minimizing

ol oS = (L= 11 ar ),

which is the HD between f, and f, where h,>0 satisfies n”zhi—ﬂ and n" 2p,—oo. Using

the above MHDE we define goodness-of-fit tests in the next section.
3. Hellinger Deviance Tests

Let @, be a proper subset of @ and consider the problem of testing the null hypothesis

Hy 6= ©, against the alternative hypothesis H, 8= G\@,. The log likelihood ratio statistic is
given by
A=2n[L,(8)— L, ()],

where L,(8)=n"" 2:1 log(fs(X,)) is the average log likelihood function, and @ and ¥,

are points corresponding to the maximization of L,(8) over ® and ;. In general, for a

disparity o one can define the disparity test statistic
de=2nloe( 7, F5) — 0 Fur F D],

where @ and 8, correspond to the minimization of 4(f,,fs) over ® and ©y. The likelihood
ratio test /1 has the property that if @&, is g-dimensional subset of @ and &, is an

r-dimensional subset of @, then the test of @, against ®\@, can be partitioned into a test of
©, versus O\ ©; and a test of O, versus ®\@,. This property of A is shared by the test
d;. The test dpp corresponding to the likelihood disparity defined using G(8)=
(6+1)log(8+1) will be a close relative of A. Note that when G(8)=[(s+1)"*—1]?

(corresponding to two times squared Hellinger distance) d; gives Simpson’s (1989) Hellinger

deviance test dpp=2n[ oup(Fn, f 5 — o1l Fur £ ).
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4. Simulation Scheme

In our Monte Carlo study we have compared the Hellinger deviance test (dyp), the
likelihood disparity test (drp), and the likelihood ratio test /A in finite samples. We have done

the computations for the normal model. Simulations were run using MICROSOFT FORTRAN
POWER STATION on WINDOWS 95. The subroutines DRNNOA, DRNUN and DRNSTT of
the IMSL subroutine were used to generate the normal, uniform and t random numbers
respectively.

For the normal model we consider the following three contaminated data generating
schemes: The populations are

@) (1—&)N(g, &)+ eN(3,1);
(i) (1— &)y, ) + eN(u, 25)
(i) (1= &)N(g, o*) + eX1)

where € is the contaminating proportion. We consider testing Hyp=0 versus H;u#0 (a) by
treating o as known and equal to 1 and (b) by treating o® to be unknown and to be
estimated from data like x. For the three test statistics dyp, d;jp and 1 we have computed

the level (and power) when data were generated with ¢ = 0 (and u = 0.5 for power) under

no contamination with € = 0 as well as under contamination with € = 0.20.
For the MHDE we computed the kernel density

1 x— X
A, g“’( h, )

o=

n

with biweight kernel w(x)=(15/16)(1—x%)? for |x|<1, and O otherwise and independent
observations X;’s,i=1,...,n. Parzen (1962) found the %, which minimizes the integrated
mean square error between a kernel density estimate and the true density f When f is a

N(p,az) density, for the biweight kernel, %, is of the form
hn — (356) 1/5 (7T/8)1/100'7l_1/5.

If o is not known as in the testing case (b) above, then in the above formula of %, we

replace o with the robust estimate o,=1.48(median(| X;— median(X,)|). The numerical

integrals were computed using Simpson’s one-third rule, and the Newton-Raphson algorithm



972 Dong Bin Jeong

was used to solve for the roots of the estimating equations. As intial estimates of # and ¢ in
the iterations we used

~ (0

- median(X;), 0= 1.48 % medz'an(lX,-— p (O)I).

All the computations are done with 5000 replications, the same set of samples being used
for the calculation of these statistics. In these calculations we have used nominal levels 0.01,
0.05 and 0.10 and sample sizes 12, 20 and 50. The empirical levels and powers of the tests
under contamination and no contamination have been presented in Table 1 for case (a)

(=1 known), and in Table 2 for case (b) ( ¢ unknown).

- . . =2 . Coa
In case (a), the likelihood ratio statistic, # X with X the sample mean, is distributed as

24(1) distribution under standard normal sampling. For the tests dyp and d;p we used the

2*(1) critical values. In case (b), the likelihood ratio statistic is given by A= nlog{1+
T?/(n—1)] where T is a t-statistic with n-1 degrees of freedom. The level (1 — @) critical
value for A is given by nlogll1+ FQ1 —a1,n—1)/(n—1)], where FF( - ;v,, v5) denotes the F

distribution function with »; and v, degrees of freedom.

5. Discussion of the Results

The empirical levels and powers of the Hellinger deviance test (HDT), the likelihood
disparity test (LDT) and the likelihood ratio test (LRT) of the hypothesis Hgyyg=0 for both

pure (¢=0) and contaminated (e=0.20) models are presented in Table 1 and 2. Now we
discuss our findings based on Table 1 and Table 2.

For the pure model, the empirical sizes of the likelihood ratio test (LRT) are more or less
closer to nominal level than those of Hellinger deviance test (HDT) but there are no big
differences between two tests. When we increase the sample size, the empirical powers of
both tests get bigger and closer with each other.

Under contamination, the levels of the LRT get perturbed while the robust Hellinger
deviance test holds their levels much better than the likelihood disparity test and the likelihood
ratio test. It also seems that as the sample size increase, the likelihood ratio test loses power
under contamination. In the meanwhile, the results from both Table 1 and Table 2 show that

the HDT based on Table 1 (with ¢ known) has a little more relative efficiency than that
based on Table 2 (with ¢ unknown) with respect to both the LRT and the LDT.

6. Concluding Remarks

We have studied the small sample performance of goodness-of-fit tests based on HD under
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normal models. It is shown that the Hellinger deviance test is robust in the presence of
outliers for the normal models. When the data come from the model, our study shows that
compared to the likelihood ratio test and the likelihood disparity test, the empirical levels and
powers of the Hellinger deviance test is satisfactory for the small sample size. Through an
empirical study at the normal models it is shown that the Hellinger deviance test is good
robust alternatives to the likelihood ratio test.
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APPENDIX

Table 1. Level and power of the Hellinger Deviance Test (HDT), the Likelihood Ratio
Test (LRT), and the Likelihood Disparity Test (LDT) for N(0, 1) vs. N(p, 1), u=0

Sampling distribution: N, 1) N(0.5,1)
Nominal level 0.10 0.05 0.01 0.10 0.05 0.01
n=12

HDT 9.58 434 0.90 50.92 37.88 16.56

LRT 10.06 5.02 1.02 53.96 4148 19.64

LDT 8.86 4.68 1.06 5344 41.10 1938
n=20

HDT 10.06 4.54 094 70.22 57.76 33.88

LRT 10.04 5.04 1.04 7230 60.24 3736

LDT 10.26 512 098 72.78 61.14 37.38
n=150

HDT 9.78 4.80 092 96.62 93.18 80.78

LRT 10.02 5.04 1.02 96.80 94.14 83.74

LDT 10.28 4.86 0.88 97.18 94.14 83.32
Sampling distribution 0.8N(0, 1)+0.2N(3, 1) 0.8N(0.5, 1)+0.2N(3, D
Nominal level 0.10 0.05 0.01 0.10 0.05 0.01
n=12

HDT 27.22 1842 834 76.06 66.48 45.00

LRT 60.82 52.76 37.96 90.82 86.18 73.28

LDT 60.82 52.76 37.96 90.82 86.18 73.28
n=290

HDT 34.66 25.74 11.96 90.64 85.28 70.60

LRT 7532 68.24 5234 98.02 96.58 91.32

LDT 7532 68.24 52.34 98.02 96.58 91.32
n= 150

HDT 54.62 43.62 2546 99.90 99.76 98.64

LRT 95.66 9340 86.20 100.00  100.00 99.98

LDT 95.66 9340 86.20 100.00  100.00 99.98
Sampling distribution 0.8N(0, 1)+0.2N(0, 25) 0.8N(0.5, 1)+0.2N(0.5, 25)
Nominal level 0.10 0.05 0.01 0.10 0.05 0.01
n=12

HDT 13.52 8.04 2.36 4586 3494 16.50

LRT 45.26 37.92 26.86 59.98 52.70 39.00

LDT 4448 37.52 2642 59.66 52.18 3844
n=20

HDT 13.78 7.74 2.08 61.50 50.52 2946

LRT 4594 38.70 26.70 65.64 58.24 4588

LDT 4564 3822 26.16 6548 58.00 45.52
n=50

HDT 1328 7.02 1.92 90.16 84.68 66.92

LRT 50.22 41.84 27.90 79.76 75.26 65.90

LDT 49.60 41.26 27.26 79.68 75.08 65.62
Sampling distribution 0.8N(0, 1+0.2t(1) 0.8N(0.5, 1+0.2t(1)
Nominal level 0.10 0.05 0.01 0.10 0.05 0.01
n=12

HDT 9.48 490 0.98 39.36 27.66 11.32

LRT 28.54 23.04 14.64 49.08 39.36 24.64

LDT 23.78 17.90 9.18 46.00 3572 19.98
n=20

HDT 10.68 5.54 1.36 55.56 43.20 22.36

LRT 3346 27.06 17.90 60.38 51.62 3542

LDT 26.56 19.68 10.38 56.64 46.96 30.18
n= 50

HDT 12.38 6.30 148 86.36 78.64 58.66

LRT 3942 31.88 22.34 7646 70.56 57.70

LDT 28.58 20.68 11.22 78.56 71.60 57.24




Table 2. Level and Power of Testing Hy: p =0 vs.

Minimum Hellinger Distance Based Goodness-of-fit Tests

H, p# 0 with ¢’ Unspecified

Sampling distribution:

N, )

N(0.5,1)

Nominal level

0.10 0.05 0.01

0.10 0.05 0.01

n=12
HDT
LRT
LDT
n=20
HDT
LRT
LDT
n=>50
HDT
LRT
LDT

932 5.46 1.14
10.10 5.04 0.98
6.72 338 0.86

9.42 5.10 1.14
10.00 5.04 1.02
7.30 3.74 0.78

9.34 4.74 092
10.06 5.02 1.02
8.02 3.80 0.74

47.06 35.14 17.16
48.32 35.00 1422
42.94 30.64 1418

66.90 53.64 31.14
68.62 55.96 29.10
64.00 49.98 27.22

96.22 92.16 78.14
96.48 93.24 79.22
95.70 91.42 75.80

Sampling distribution:

0.8N(0, D+ 0.2NG3, 1)

0.8N(0.5, 1)+0.2N(, 1)

Nominal level

0.10 0.05 0.01

0.10 0.05 0.01

n=12
HDT
LRT
LDT
n=120
HDT
LRT
LDT
n=>50
HDT
LRT
LDT

31.78 21.54 7.50
3212 27.52 9.18
32.56 26.36 8.70

48.62 34.20 1444
50.62 35.06 15.02
49.82 34.90 1494

81.82 73.06 4926
87.20 78.06 50.18
84.70 74.54 50.10

78.68 62.96 36.58
78.64 63.10 3734
78.12 62.26 37.10

93.80 88.52 70.02
94.26 88.38 6520
93.40 86.92 64.66

100.00 99.96 9942
100.00 99.98 99.66
100.00 99.92 9940

Sampling distribution:

0.8N(0, 1)+ 0.2N(0,25)

0.8N(0.5, 1)+ 0.2N(0.5,25)

Nominat level

010 0.05 0.01

0.10 0.05 0.01

n=12
HDT
LRT
LDT
n=20
HDT
LRT
LDT
n=>50
HDT
LRT
LDT

13.64 8.12 250
414 236 040
4.58 2.40 046

13.88 7.88 216
4.96 238 032
5.06 2.42 038

12.52 7.20 1.98
5.60 2.58 0.34
5.64 2.62 0.40

44.58 3478 18.96
25.38 14.98 3.74
25.48 15.24 544

56.34 45.46 2794
30.56 2048 7.24
31.22 21.46 7.30

85.30 77.38 58.86
46.76 35.20 1640
47.22 35.52 16.76

Sampling distribution:

0.8N(0, 1)+ 0.21)

0.8N(0.5, D+ 021D

Nominal level

0.10 0.05 0.01

0.10 0.05 0.01

n=12
HDT
LRT
LDT
n=20
HDT
LRT
LDT
n=>50
HDT
LRT
LDT

12.12 4.28 1.78
5.88 3.12 048
6.62 4.14 0.70

11.02 5.90 1.28
6.36 328 0.58
7.52 3.46 0.62

10.72 5.58 1.26
6.78 3.44 040
7.42 3.56 046

41.48 30.70 1534
27.26 17.52 532
30.24 20.84 838

53.36 43.04 23.20
34.54 24.36 10.24
3838 2842 12.86

84.14 75.40 54.62
45.54 35.86 2010
58.44 47.14 27.56
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