• 제목/요약/키워드: Empirical formulas

검색결과 224건 처리시간 0.027초

Development of Empirical Formulas for Approximate Spectral Moment Based on Rain-Flow Counting Stress-Range Distribution

  • Jun, Seockhee;Park, Jun-Bum
    • 한국해양공학회지
    • /
    • 제35권4호
    • /
    • pp.257-265
    • /
    • 2021
  • Many studies have been performed to predict a reliable and accurate stress-range distribution and fatigue damage regarding the Gaussian wide-band stress response due to multi-peak waves and multiple dynamic loads. So far, most of the approximation models provide slightly inaccurate results in comparison with the rain-flow counting method as an exact solution. A step-by-step study was carried out to develop new approximate spectral moments that are close to the rain-flow counting moment, which can be used for the development of a fatigue damage model. Using the special parameters and bandwidth parameters, four kinds of parameter-based combinations were constructed and estimated using the R-squared values from regression analysis. Based on the results, four candidate empirical formulas were determined and compared with the rain-flow counting moment, probability density function, and root mean square (RMS) value for relative distance. The new approximate spectral moments were finally decided through comparison studies of eight response spectra. The new spectral moments presented in this study could play an important role in improving the accuracy of fatigue damage model development. The present study shows that the new approximate moment is a very important variable for the enhancement of Gaussian wide-band fatigue damage assessment.

Analysis methodology of local damage to dry storage facility structure subjected to aircraft engine crash

  • Almomani, Belal;Kim, Tae-Yong;Chang, Yoon-Suk
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1394-1405
    • /
    • 2022
  • The importance of ensuring the inherent safety and security has been more emphasized in recent years to demonstrate the integrity of nuclear facilities under external human-induced events (e.g. aircraft crashes). This work suggests a simulation methodology to effectively evaluate the impact of a commercial aircraft engine onto a dry storage facility. A full-scale engine model was developed and verified by Riera force-time history analysis. A reinforced concrete (RC) structure of a dry storage facility was also developed and material behavior of concrete was incorporated using three constitutive models namely: Continuous Surface Cap, Winfrith, and Karagozian & Case for comparison. Strain-based erosion limits for concrete were suitably defined and the local responses were then compared and analyzed with empirical formulas according to variations in impact velocity. The proposed methodology reasonably predicted such local damage modes of RC structure from the engine missile, and the analysis results agreed well with the calculations of empirical formulas. This research is expected to be helpful in reviewing the dry storage facility design and in the probabilistic risk assessment considering diverse impact scenarios.

환경하중하의 풍력발전 시스템 구조물의 수치 해석적 기법 연구 (Study on Numerical-analysis Technique for Windpower System Structure under Environmental Loadings)

  • 정해영;홍철현
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.69-75
    • /
    • 2011
  • The purpose of this study was to develop a buckling analysis technique for a windpower system structure under environmental loadings (hydrostatic pressure) using FEM. We analyzed an isotropic material and composite material and made a comparison using buckling pressure formulas. First, finite element analyses for an isotropic material (SC410) were performed to obtain the variation of buckling pressure for the number of elements and boundary conditions in a pressure-shell model, and the numerical results were compared with those of existing empirical formulas. Then, additional finite element analyses based on the results of the isotropic material (SC410) were performed to determine the optimum lamination angle and pattern for a composite material (URN300). The results of the FE analyses for the composite material were also compared with those of existing empirical formulas. The ply orientations (lamination angles) used in the FE analyses were $0^{\circ}$, $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $75^{\circ}$, and. The lamination patterns in the FE analyses were and. The lamination pattern was assumed to be the equivalent model of. The results of the FE analyses for the isotropic material (SC410) indicated that the optimal values for the number of elements and the boundary conditions were 6000 and both simply supported, respectively. The results of the FE analyses for the composite material (URN300) showed that the optimal ply orientation was $60^{\circ}{\sim}75^{\circ}$.

A new integrated method to design of rock structures

  • Aksoy, Okay C.;Uyar, Gulsev G.;Utku, Semih;Safak, Suleyman;Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.339-352
    • /
    • 2019
  • Rockmass parameters are used in the design of engineering structures built in rock and soil. One of the most important of these parameters is the rockmass Emass (Emass). Determination of the Emass of rockmass is a long, hard and expensive job. Therefore, empirical formulas developed by different researchers are used. These formulas use the elastic modulus of the material as a parameter. This value is a constant value in the design. However, engineering structures remain under different loads depending on many factors, such as topography, geometry of the structure, rock / soil properties. Time is other important parameter for rock/soil structure. With the start of the excavation, the loads that the structure is exposed to will change and remain constant at one level. In the new proposed method, the use of different Emass calculated from empirical formulas using the different material elastic modulus, which has different values under different loads as time dependent, was investigated in rock/soil structures during design. The performance of the stability analysis using different deformation modules was questioned by numerical modeling method. For this query, a sub-routine which can be integrated into the numerical modeling software has been developed. The integrated sub-routine contains the formula for the Emass, which is calculated from the material elasticity modules under time dependent and different constant loads in the laboratory. As a result of investigations conducted in 12 different field studies, the new proposed method is very sensitive.

설계단계에서의 트롤어선 조종성능 추정 정확성 향상에 대한 연구 (A study on the improvement of the accuracy of fishing trawlers maneuverability estimation at the design stage)

  • 김수형;이춘기;이민규
    • 수산해양기술연구
    • /
    • 제56권4호
    • /
    • pp.374-383
    • /
    • 2020
  • At ship design stage, the maneuverability is generally estimated based on the empirical formula or the computational fluid dynamic (CFD), which is one of the numerical simulation methods. Using the hydrodynamic derivatives derived through these methods can quantitatively estimate the maneuverability of target vessels and evaluate indirect maneuverability. Nevertheless, research on estimating maneuverability is insufficient for ships not subject to IMO maneuverability standard, especially fishing vessels, and even at the design stage, the empirical formula developed for merchant ships is applied without modification. An estimation error may occur due to the empirical formula derived from the regression analysis results of a model test if the empirical formula developed for merchant ships with different hull shapes is applied to fishing vessels without any modification. In this study, the modified empirical formula that can more accurately estimate the fishing vessel's maneuverability was derived by including the hull shape parameter of target fishing trawlers in the regression analysis process that derives Kijima et al. (1990) formula. As a result, the modified empirical formula showed an average estimation error of 6%, and the result improved the average error of 49% of Kijima et al. (1990) formula developed for merchant ships.

상대여유고가 낮은 테트라포드 피복 경사제의 월파량에 대한 수리모형실험 및 기존 경험식의 예측성능 분석 (Hydraulic Model Experiments and Performance Analysis of Existing Empirical Formulas for Overtopping Discharge on Tetrapod Armored Rubble Mound Structures with Low Relative Freeboard)

  • 유상우;김재영;김도삼;이광호
    • 한국해안·해양공학회논문집
    • /
    • 제36권3호
    • /
    • pp.105-115
    • /
    • 2024
  • 호안을 포함한 해안구조물의 설계 시 월파량 평가는 주로 수리모형실험에 의존하며, 이를 기반으로 월파량 예측을 위한 많은 경험식이 제안되었다. 일반적으로 월파방지를 위한 호안구조물의 경우 설계조위에 설계파의 최대 수면진폭을 고려하여 마루높이가 결정되므로 입사파고에 비해 상대적으로 높은 여유마루고를 갖는다. 그러나, 월파를 원천적으로 차단하기 위해서는 비경제적인 구조물의 마루높이가 요구되기 때문에 호안구조물의 설계 시 월파량을 허용 가능한 수준으로 제한하는 허용월파량의 개념을 도입하고 있다. 따라서, 실해역에서는 입사파고에 비해 상대적으로 낮은 여유마루고를 갖는 호안구조물들이 존재한다. 본 연구에서는 수리모형실험을 통해 상대적으로 낮은 여유마루고를 갖는 사석경사제의 월파량에 관해 검토하였다. 또한, 월파량의 실험결과를 이용하여 기존 월파량 산정을 위한 경험식의 예측성능을 상호 비교·분석하였다.

Modified Design Formula for Predicting the Ultimate Strength of High-tensile Steel Thin Plates

  • Park, Joo Shin;Seo, Jung Kwan
    • 해양환경안전학회지
    • /
    • 제27권3호
    • /
    • pp.447-456
    • /
    • 2021
  • Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.

Huntite-borate결정의 격자상수 산출을 위한 계산식의 도출 (An empirical formula for the calculation of lattice parameters of the huntite-borate crystals)

  • ;;윤대호
    • 한국결정성장학회지
    • /
    • 제8권1호
    • /
    • pp.91-96
    • /
    • 1998
  • Huntite 구조를 갖는 borate결정의 격자상수($a_0$$c_0$ ) 산출을 위해 특정관계를 갖는 계산식을 도출하였다. 이를 위해 서로 다른 28종류의 조성을 갖고 있는 결정을 사용하였다. 이와 같은 계산식은 huntite 구조내에 위치하는 이온의 평균 반경을 함수로 하여 미지의 조성을 갖고 있는 결정으로부터 격자상수를 예상하는데 사용될 수 있다.

  • PDF

낙동강 오염총량관리 단위유역 유달율 경험공식 (Empirical Equation for Pollutant Loads Delivery Ratio in Nakdong River TMDL Unit Watersheds)

  • 김문성;신현석;박주현;김상단
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.580-588
    • /
    • 2009
  • In this study daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. Finally, multiple regression analysis is carried out to estimate empirical equations for pollutants delivery ratio. The results show that there is positive relation between the flow rates and delivery ratios, and the proposed empirical formulas for delivery ratio can predict well river pollutant loads.

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.