• Title/Summary/Keyword: Emitters

Search Result 307, Processing Time 0.035 seconds

Novel Organic Electron Injectors for the Enhancement of Lifetime, Efficiency and Reduction in Operating Voltage in OLEDs

  • Kathirgamanathan, Poopathy;Arkley, Vincent;Surendrakumar, S.;Paramaswara, G.;Ganeshamurugan, S.;Antipan-Lara, J.;Ravichandran, S.;Kumaraverl, M.;Chan, Y.F.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1206-1209
    • /
    • 2007
  • Both PM-OLEDs and AM-OLEDs are now in production. However, manufacturers are still concerned about life-time, voltage drift, operating voltage and efficiency in order to develop larger displays. Most material suppliers seem to be focussing on emitters and the benefits of introducing suitable charge transporters have been largely unexplored. OLED-T has developed a novel organic electron injector (Trade Name: EI-101) which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF which requires $580^{\circ}C$. EI-101 has been found to increase the lifetime by up to 12%, reduce the voltage drift by up to 61% and increase the efficiency by up to 15%. The material can be handled in air and in situ Q-mass spectroscopy on extended thermal evaporation has confirmed its high stability for use in mass production.

  • PDF

Improved EL efficiency and operational lifetime of top-emitting white OLED with a co-doping technology

  • Lee, Meng-Ting;Tseng, Mei-Rurng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1411-1414
    • /
    • 2007
  • We have developed a top-emitting white organic electroluminescent device (TWOLED) incorporating a low-reflectivity molybdenum (Mo) anode and doped transport layers as well as a dual-layer architecture of doped blue and yellow emitters with the same blue host. The EL efficiency and operational lifetime of TWOLED can be enhanced by a factor of 1.2 and 3.4 than that of standard TWOLED, respectively, with a co-doping technology in yellow emitter by doping another blue dopant. The enhancement in device performances can be attributed to improve the energy transfer efficiency from blue host to yellow dopant through a blue dopant as medium in yellow emitter.

  • PDF

Field emission lamp for LCD backlight based on RGB phosphors and vertically-aligned CNTs

  • Park, Boo-Won;Choi, Nam-Sik;Kim, Sung-Hoon;Jeong, Yun-Tae;Kim, Jong-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1545-1546
    • /
    • 2007
  • Zinc gallate-based RGB phosphors and vertically aligned carbon nanotube emitters are prepared for flat field-emission lamp. The blend phosphors of blue $ZnGa_2O_4$, green $ZnGa_2O_4:Mn^{2+}$ and red $ZnGa_2O_4:Cr^{3+}$ are coated on the front glass, and the carbon nanotubes are chemically bonded on the rear ITO glass as a cathode.

  • PDF

Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application (Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석)

  • ;;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF

Fabrication of the silicon field emitter araays with H$_{2}$O densified oxide as a gate insulator (H$_{2}$O 분위기에서 치밀화시킨 (densified) 산화막을 게이트 절연막으로 갖는 실리콘 전계방출소자의 제작)

  • 정호련;권상직;이종덕
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.171-175
    • /
    • 1996
  • Gate insulator for Si field emitter is usually formed by e-beam evaporation. However, the evaported oxide requires densification for a stable process and a reduction of gate leakage which results from its Si-rich and nonstoicheiometric structure. In this study, we have developed the process technology able to densify the evaporated oxide in H$_{2}$O ambient. Using this process, we have fabricted thefield emitter array with 625 emitters per pixel, of which gate hole diameter is 1.4.mu.m, for the pixel, anode current of 14.3.mu.A was extracted at a gate bias of 100V and gate leakage was about 0.27% of the total emission current.

  • PDF

Multifunctional Gesture Recognition using Infrared Light Emitters (적외선을 이용한 다기능 제스처 인식 포인터)

  • Lee, Kyu-Hwa;Jin, Yoon-Suk;Lee, Jin-Kyu;Choi, Young-Kyu;Park, Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.423-428
    • /
    • 2007
  • 본 연구는 기존의 프레젠터의 단순한 포인터 및 클릭 기능을 넘어선 다기능 제스처 인식 포인터의 구현이 주 목적이다. 주된 연구 내용으로는 적외선 발광 다이오드에서 나오는 빛을 인지하여 포인터의 궤적 인식을 하는 기술과 이를 응용한 어플리케이션의 개발에 있다. 본 하드웨어에는 기본적인 마우스 클릭 기능 외에도 적외선 발광 다이오드를 탑재하여 PC와 연결된 카메라가 이를 인지하도록 한다. 장점으로는 카메라가 항상 PC와 가까이 있을 필요가 없으므로 어느 장소이든 관계없이 적외선 투과 필터가 장착된 카메라 하나만 설치할 수 있는 곳이면 구현이 가능하며 적외선을 이용하므로 가시광선의 영향을 적게 받아 효율적으로 영상 처리를 할 수 있다는 데에 있다. 제스처 인식을 통하여 수많은 여러 가지 기능을 실행할 수 있으며, 보다 사용자와 인터랙티브한 작업이 가능해진다. 구현된 하드웨어와 소프트웨어 시스템은 프레젠테이션 및 게임 컨트롤에 사용되었다.

  • PDF

A Novel Carbon Nanotube FED Structure and UV-Ozone Treatment

  • Chun, Hyun-Tae;Lee, Dong-Gu
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • A 10" carbon nanotube field emission display device was fabricated with a novel structure with a hopping electron spacer (HES) by screen printing technique. HES plays a role of preventing the broadening of electron beams emitted from carbon nanotubes without electrical discharge during operation. The structure of the novel tetrode is composed of carbon nanotube emitters on a cathode electrode, a gate electrode, an extracting electrode coated on the top side of a HES, and an anode. HES contains funnel-shaped holes of which the inner surfaces are coated with MgO. Electrons extracted through the gate are collected inside the funnel-shaped holes. They hop along the hole surface to the top extracting electrode. In this study the effects of the addition of HES on emission characteristics of field emission display were investigated. An active ozone treatment for the complete removal of residues of organic binders in the emitter devices was applied to the field emission display panel as a post-treatment.

Fabrication and characterization of a carbon nanotube-based point electron source

  • Choi, Ha-Kyu;Kim, G.Y.;Song, Y.I.;Jeong, H.J.;Lim, S.C.;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1536-1537
    • /
    • 2005
  • We have made point electron sources using carbon nanotubes (CNTs). For the fabrication of point electron sources, CNTs were dispersed in a solution and attached on electrochemically etched W tips using electrophoresis. In our study, we have utilized various CNTs such as single-walled CNT (SWCNT), multiwalled CNT (MWCNT), and thin-MWCNT and threshold current, turn-on voltage, filed enhancement factor of each emitter have been studied upon a tube/bundle diameter and length. In addition, fieldemitted electron energy distribution of various CNT emitters is characterized.

  • PDF

Effects of additives and post-treatments on emission characteristics of carbon nanotubes field emitters by screen printing method

  • Lee, Duck-Jin;Kim, Sam-Soo;Lee, Yang-Kyu;Chun, Hyun-Tae;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1447-1450
    • /
    • 2005
  • Carbon nanotube field emission display devices were fabricated using screen printing techniques. The CNT pastes are composed of organic binder, CNT, and additive materials such as glass frit, silver or ITO powders. The change in mixing ratio of various organic binders in CNT paste varied the electron emission characteristics. With increasing the contents of additive materials in CNT paste, turn-on field were increased, leading to decrease in electron emission current. The post-treatment process in this study induced the vertical alignment of carbon nanotubes on glass, resulting in the improvement of electron emission uniformity.

  • PDF

Color Nanotube Field Emission Displays for HDTV

  • Dean, K.A.;Coll, B.F.;Dinsmore, A.;Howard, E.;Hupp, M.;Johnson, S.V.;Johnson, M.R.;Jordan, D.C.;Li, H.;Marshbanks, L.;McMurtry, T.;Tisinger, L.Hilt;Wieck, S.;Baker, J.;Dauksher, W. J.;Smith, S.M.;Wei, Y.;Weston, D.;Young, S.R.;Jaskie, J.E.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1003-1007
    • /
    • 2005
  • We demonstrate color video displays driven by carbon nanotube electron field emitters. These nanotubes are incorporated into the device by selective growth using low temperature chemical vapor deposition. The device structure is simple and inexpensive to fabricate, and a 45 V switching voltage enables the use of low cost driver electronics. The prototype units are sealed 4.6” diagonal displays with 726 um pixels. They represent a piece of a 42” diagonal 1280x720 high definition television. The carbon nanotube growth process is performed as the last processing step and creates nanotubes ready for field emission. No activation post-processing steps are required, so chemical and particulate contamination is not introduced. Control of the nanotube dimension, orientation, and spatial distribution during growth enables uniform, highquality, color video performance.

  • PDF