• Title/Summary/Keyword: Emitter series resistance

Search Result 18, Processing Time 0.024 seconds

Simulation for the analysis of distortion and electrical characteristics of a two-dimensional BJT (2차원 BJT의 전기적 특성 및 왜곡 해석 시뮬레이션)

  • 이종화;신윤권
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.84-92
    • /
    • 1998
  • A program was developed to analyze the electrical characteristics and harmonic distrotion in a two-dimensional silicon BJT. The finite difference equations of the small signal and its second and thired harmonics for basic semiconductor equations are formulated treating the nonlinearity and time dependence with Volterra series and Taylor series. The soluations for three sets of simultaneous equations were obtained sequantially by a decoupled iteration method and each set was solved by a modified Stone's algorithm. Distortion magins and ac parameters such as input impedance and current gains are calculated with frequency and load resistance as parameters. The distortion margin vs. load resistancecurves show cancellation minima when the pahse of output voltage shifts. It is shown that the distortionof small signal characteristics can be reduced by reducing the base width, increasing the emitter stripe length and reducing the collector epitaxial layer doping concentration in the silicon BJT structure. The simulation program called TRADAP can be used for the design and optimization of transistors and circuits as well as for the calculation of small signal and distortion solutions.

  • PDF

Effect of Different Front Metal Design on Efficiency Affected by Series Resistance and Short Circuit Current Density in Crystalline Silicon Solar Cell (결정질 실리콘 태양전지의 전면 전극의 패턴에 따른 전류 밀도 및 특성 저항 변화에 대한 영향과 효율 변화)

  • Jeong, Sujeong;Shin, Seunghyun;Choi, Dongjin;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.518-523
    • /
    • 2017
  • In commercial solar cells, the pattern of the front electrode is critical to effectively assemble the photo generated current. The power loss in solar cells caused by the front electrode was categorized as four types. First, losses due to the metallic resistance of the electrode. Second, losses due to the contact resistance of the electrode and emitter. Third, losses due to the emitter resistance when current flows through the emitter. Fourth, losses due to the shading effect of the front metal electrode, which has a high reflectance. In this paper, optimizing the number of finger on a $4{\times}4$ solar cell is demonstrated with known theory. We compared the short circuit current density and fill factor to evaluate the power loss from the front metal contact calculation result. By experiment, the short circuit current density($J_{sc}$), taken in each pattern as 37.61, 37.53, and $37.38mA/cm^2$ decreased as the number of fingers increased. The fill factor(FF), measured in each pattern as 0.7745, 0.7782 and 0.7843 increased as number of fingers increased. The results suggested that the efficiency(Eff) was measured in each pattern as 17.51, 17.81, and 17.84 %. Throughout this study, the short-circuit current densities($J_{sc}$) and fill factor(FF) varied according to the number of fingers in the front metal pattern. The effects on the efficiency of the two factors were also investigated.

Effect of Buried Contact on the Epitaxial Base Silicon Solar Cell (에피텍셜 베이스 실리콘 태양전지에서 Buried Contact 효과)

  • Chang, Gee-Keun;Lim, Yong-Keu;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.313-316
    • /
    • 2003
  • The new epitaxial base cell as a high efficiency Si solar cell was fabricated and the effect of buried contact on the cell characteristics was investigated. In our experiments, the cell with buried contact showed the open circuit voltage of 0.62 V, the short circuit current of 40 mA, the fill factor of 0.7, and the efficiency of 10% under the incident light of AM-1 100 ㎽/$\textrm{cm}^2$. The insertion of buried contact in the epitaxial base structure brought the fabricated cell to the efficiency improvement of about 33%. The cell proposed in this paper has the structural superiority in the fabrication of high efficiency solar cell due to the carrier drift transport in the optical absorption region and the formation of back surface field by $p^{-}$ $p^{+}$ epitaxial base, and the reduction of emitter series resistance by n+ buried contact.

Textured Surface Epitaxial Base Silicon Solar Cell (Textured 표면을 갖는 에피텍셜 베이스 실리콘 태양전지)

  • 장지근;임용규;정진철
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.33-37
    • /
    • 2003
  • The new textured surface epitaxial base(TSEB) cell as a high efficiency Si solar cell was fabricated and its eletro-optical characteristics were investigated. The fabricated device showed the open circuit voltage of 0.62 V, the short circuit current of 40 mA, the fill factor of 0.7, and the efficiency of 16% under the incident light of AM-1 100 mW/$cm^2$. The TSEB cell proposed in this paper has the structural superiority in the fabrication of high efficiency solar cell due to the carrier drift transport in the optical absorption region and the formation of back surface field by $P^-/P^+$ epitaxial base, and the low emitter series resistance by insertion of $n^+$ buried contact.

  • PDF

The Effect of Surface Recombination Current on the Saturation Current in Si Solar Cell (Si 태양전지(太陽電池)의 표면재결합(表面再結合) 전류(電流)가 포화전류(飽和電流)에 미치는 영향(影響))

  • Shin, Kee-Shik;Lee, Ki-Seon;Choi, Byung-Ho
    • Solar Energy
    • /
    • v.8 no.2
    • /
    • pp.12-18
    • /
    • 1988
  • The effect of surface recombination current density on the saturation current density in Si solar cell has been studied. Theoretical model for surface recombination current was set up from emitter transparent model of M.A. Shibib, and saturation current of Si solar cell made by ion implantation method was also measured by digital electrometer. The theoretical surface recombination current density which is the same as saturation surface recombination current density in Shibib model was $10^{-11}[A/cm^2]$ and the measured value was ranged from $8{\times}10^{-10}$ to $2{\times}10^{-9}[A/cm^2]$. Comparing with the ideal p-n junction of Shockley, transparent emitter model shows improved result by $10^2$ order of saturation current density. But there still exists $10^2$ order of difference of saturation current density between theoretical and actual values, which are assumed to be caused by 1) leakage current through solar cell edge, 2) recombination of carriers in the depletion layer, 3) the series resistance effect and 4) the tunneling of carriers between states in the band gap.

  • PDF

Design and Fabrication of Compound Semiconductor Solar Cells Grown by MOCVD-Field Aided Heteroface Cell (MOCVD를 이용한 화합물 반도체 Solar Cell의 개발-Field Aided Heteroface 전지)

  • 창기근;엄우용;임성규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.9
    • /
    • pp.752-760
    • /
    • 1991
  • The computer aided analysis is performed to investigate the influence of physical parameters (thickness and doping concentration, etc.) in the window, emitter, base on the efficiency characteristics of a uniformly doped hetroface cell. A field aided heteroface cell is newly designed on a basis of optimum data obtained from the theoretical analysis. The field aided heteroface cell fabricated using MOCVD exhibits a total/active area conversion efficiency of EFF. (tot) = 18.9% /EFF. (act.) = 21.4% under the natural incident light of 56.2 mW/cm\ulcorner having a low series resistance of Rs = 0.94 \ulcornercm\ulcornerand a high spectral response of S.R. (ext) > 90% in a range of $7700{\AA}$ < $8500{\AA}$.

  • PDF

Characteristics of metal contact for silicon solar cells (실리콘 태양전지의 금속전극 특성)

  • Cho, Eun-Chel;Kim, Dong-Seop;Min, Yo-Sep;Cho, Young-Hyun;Ebong, A.U.;Lee, Soo-Hong
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.59-66
    • /
    • 1997
  • The solar cell electrical output parameters such as the open circuit voltage($V_{oc}$) and short circuit current density($V_{sc}$) are intrinsic characteristics depending on junction depth, doping concentration, metal contacts barriers and cell structure. As a role of thumb for solar cell design, the metal contact barriers for phosphorus doped emitter should have lower work function in order to provide lower series resistance. The fabrication of PESC(passivated emitter solar cell) structure usually involves the use of titanium as a metal contact barrier. Chromium, which work function is similar to titanium but conductance is higher than titanium is being investigated as the new metal contact barrier. Although titanium has lower work function difference than chromium, the electric performances of chromium as contact barrier are higher than titanium. This better performance is attributed to the lower resistivity from chromium. This paper, therefore, compares the attributes of metal barrier contacts using titanium and chromium.

  • PDF

Thickness Effect of SiOx Layer Inserted between Anti-Reflection Coating and p-n Junction on Potential-Induced Degradation (PID) of PERC Solar Cells (PERC 태양전지에서 반사방지막과 p-n 접합 사이에 삽입된 SiOx 층의 두께가 Potential-Induced Degradation (PID) 저감에 미치는 영향)

  • Jung, Dongwook;Oh, Kyoung-suk;Jang, Eunjin;Chan, Sung-il;Ryu, Sangwoo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.75-80
    • /
    • 2019
  • Silicon solar cells have been widely used as a most promising renewable energy source due to eco-friendliness and high efficiency. As modules of silicon solar cells are connected in series for a practical electricity generation, a large voltage of 500-1,500 V is applied to the modules inevitably. Potential-induced degradation (PID), a deterioration of the efficiency and maximum power output by the continuously applied high voltage between the module frames and solar cells, has been regarded as the major cause that reduces the lifetime of silicon solar cells. In particular, the migration of the $Na^+$ ions from the front glass into Si through the anti-reflection coating and the accumulation of $Na^+$ ions at stacking faults inside Si have been reported as the reason of PID. In this research, the thickness effect of $SiO_x$ layer that can block the migration of $Na^+$ ions on the reduction of PID is investigated as it is incorporated between anti-reflection coating and p-n junction in p-type PERC solar cells. From the measurement of shunt resistance, efficiency, and maximum power output after the continuous application of 1,000 V for 96 hours, it is revealed that the thickness of $SiO_x$ layer should be larger than 7-8 nm to reduce PID effectively.