• Title/Summary/Keyword: Emissions Reduction

Search Result 1,180, Processing Time 0.028 seconds

Current Status of Ship Emissions and Reduction of Emissions According to RSZ in the Busan North Port (부산 북항에서의 선박 배출물질 현황과 선속제한에 의한 배출량 감소 연구)

  • Lee, Bo-Kyeong;Lee, Sang-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.572-580
    • /
    • 2019
  • In view of the numerous discussions on global environmental issues, policies have been implemented to limit emissions in the field of marine transport, which accounts for a major part of international trade. In this study, a ship's emissions were calculated by applying the engine load factor to determine the total quantity of emissions based on the ship's speed reduction. For ships entering and leaving the Busan North Port from 1 January to 31 December 2017, emissions were calculated and analyzed based on the ship's type and its speed in the reduced speed zone (RSZ), which was set to 20 nautical miles. The comparison of the total amount of emissions under all situations, such as cruising, maneuvering, and hotelling modes revealed that the vessels that generated the most emissions were container ships at 76.1 %, general cargo ships at 7.2 %, and passenger ships at 6.8 %. In the cruising and maneuvering modes, general cargo ships discharged a lesser amount of emission in comparison with passenger ships; however, in the hotelling mode, the general cargo ships discharged a larger amount of emission than passenger ships. The total emissions of nitrogen oxides (NOx), sulphur oxides (SOx), particulate matter (PM), and volatile organic compounds (VOC), were 49.4 %, 45 %, 4 %, and 1.6 %, respectively. Furthermore, the amounts of emission were compared when ships navigated at their average service speed, 12, 10, and 8 knots in the RSZ, respectively. At 12 knots, the reduction in emissions was more than that of the ships navigating at their average service speed by 39 % in NOx, 40 % in VOC, 42 % in PM, and 38 % in Sox. At 10 knots, the emission reductions were 52 %, 54 %, 56 %, and 50 % in NOx, VOC, PM, and Sox, respectively. At 8 knots, the emission reductions were 62 %, 64 %, 67 %, and 59 % in NOx, VOC, PM, and Sox, respectively. As a result, the emissions were ef ectively reduced when there was a reduction in the ship's speed. Therefore, it is necessary to consider limiting the speed of ships entering and leaving the port to decrease the total quantity of emissions.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.

Single Manufacturer and Multiple Retailers Multi-Product Inventory Model under Cap-and-Trade Mechanism (배출권거래제 하에서 단일 제조업자-다소매업자의 공급사슬에서 다품목의 재고모형)

  • Kim, Dae-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.158-166
    • /
    • 2019
  • In pursuing carbon emission reduction efforts, companies have focused for the most part on reducing emissions due to the more efficient equipment and facilities. However they overlook a significant source of carbon emissions, one that is driven by operational policies. Currently companies are looking for solutions to reduce carbon emissions associated with their operations. Operational adjustments, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Also, Cap-and-Trade mechanism is generally accepted as on of the most effective market-based mechanism to reduce carbon emissions. In this paper, we investigate a supply chain with single manufacturer and multiple retailers multi-product inventory model under the cap-and-trade system incorporating the carbon emissions caused by transportation and warehousing activities. Also, we provide an iterative solution algorithm and derive the common order interval and the number of intervals for each product. We show by numerical example that the inventory model incorporating cap & trade mechanism can reduce total cost and carbon emissions compared to the classical inventory model. Using the numerical examples, we also investigates different carbon price on the performance of the inventory model.

A Study on Exhaust Gas Reduction By K-7 Mode of DOC (DOC의 K-7 Mode에 의한 배기가스 저감에 관한 연구)

  • 백두성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 2000
  • With the significant growth of the number of vehicles environmental problems is raised. NOx SOx, and PM emissions in diesel powered vehicles are larger than that in gasoline because the development of pollutants reduction techniques has not been yet achieved. So it is need to develop after-tratment or to convert into alternative fuel to satisfy emission regula-tion. Among the after-treatment systems to reduce the diesel emissions studies with diesel oxidation catalyst(DOC) are done greatly. In this study using DOC reduction efficiency with the change of temperature and catalyst loading was calculated through measurements of CO, HC, PM. and SOX.

  • PDF

Fuel Conversion to Renewable Energy Analysis of the Impact on the Horticulture in the Agricultural Sector -Mainly Wood Pellets- (농업부문에서 신재생에너지로의 연료전환이 시설원예에 미치는 영향 분석 -목재펠릿을 중심으로-)

  • Yoon, Sung-Yee;Kim, Tae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.4
    • /
    • pp.531-547
    • /
    • 2014
  • This study analyzed the effect of Greenhouse of wood pellet fuel conversing from Diesel. Analyzed through a life cycle assessment of greenhouse gas emissions of carbon dioxide for the environmental assessment, In evaluation of the Ministry of the Environment, analyzed through the life cycle assessment of carbon dioxide emissions of the greenhouse gas and, In the case of economic evaluation, we analyzed the investment payback period to the total revenue generated by each of the calculated incentive based on the RHI and institutions reduction projects a reduction of costs associated with the reduction of fuel costs.

The Effect of Creating Shared Value (CSV) on Reducing Greenhouse Gas Emissions: Case Study of Yuhan-Kimberly Company (공유가치창출(CSV) 활동에 의한 온실가스 감축 효과: 유한킴벌리의 사례를 중심으로)

  • Kim, Tae Hyeon;Park, Sun Kyoung;Kim, Rae Hyun
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.245-251
    • /
    • 2018
  • Creating Shared Value (CSV) is a new business paradigm in which enterprises benefit from social works. The goal of this study is to assess greenhouse gas emission reduction through CSV-related activities of Yuhan-Kimberly (YK) Company. YK Company has planted over 50 million trees between 1984 and 2016 as a part of CSV activities. Through planting of trees, annual $CO_2 $ emission reduction ranged from 196.2 thousand to $336.3\;thousand\;tCO_2-eq$ depending on forest type in 2016, representing 44 million to 84 million KRW. Those results indicate that the company can contribute to reduction of greenhouse gas emissions as well as obtain economic profits through CSV-related activities. Furthermore, this study provides motives for other companies interested in similar CSV projects.

Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon (인천항 항만시설에서의 대기오염물질 배출량 산정)

  • Han, Se-Hyun;Youn, Jong-Sang;Kim, Woo-Jung;Seo, Yoon-Ho;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.460-471
    • /
    • 2011
  • A port has been regarded as a significant contributor to air pollution in the surrounding areas. Port-related air pollutants are released from not only marine vessels, but also various land-side sources at ports, which include cargo handling equipment, vehicles, locomotives, and fugitive dust sources by port activities such as bulk handling and vehicle movements. However, most studies in Korea have only focused on vessel emissions and there is a lack of information on the emissions from other sources at port. In this study, in order to establish the port-related emission inventory and evaluate the relative contribution of these sources to air emissions from the Port of Incheon, the emissions from land-side sources were estimated and the CAPSS (Clean Air Policy Support System) data for vessel emissions were used. In particular, the detailed information and activity data for the cargo handling equipment source were collected and the emission factors and emissions by equipment types were calculated using U.S. EPA methodologies. Total HC, CO, $NO_x$, $PM_{10}$, and $SO_2$ emissions from port-related sources including the vessel in 2007 were calculated as 229 ton/year, 638 ton/year, 4,861 ton/year, 307 ton/year, and 3,995 ton/year, respectively. It was found that the vessel was the largest contributor to air pollutant emissions from the port, the cargo handling equipment was responsible for about from 8% to 13% of HC, CO, and $NO_x$ emissions and the resuspended road dust contributed about 39% for $PM_{10}$ emissions. The results of this study will be used to establish the management and reduction strategies of air pollution in the port.

An Estimation of Emission Reduction Rates to Achieve the Target Air Quality in Seoul Metropolitan Area (수도권 지역별 목표대기질 달성을 위한 오염배출 삭감율 산정 연구)

  • Kim, Jeongsoo;Kim, Jiyoung;Hong, Jihyung;Jung, Dongil;Ban, Soojin;Park, Sangnam
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • This study was carried out to estimate the emission reduction rates for the regional allowable emissions by special measures to achieve the target air quality in Seoul Metropolitan Area (SMA). A modeling system was designed to validate the details in enforcement regulations set up by local governments based on the current status and plans for air quality improvement. Modeling system was composed of meteorological model (MM5), emission model (SMOKE), and air quality model (CMAQ). Predicted results by this system show quiet well not only daily air pollutants concentration but also the tendencies of wind direction, wind speed and temperature. To achieve the target air quality in Seoul Metropolitan Area (SMA), emission allowances are estimated by seasons and regions. Referring to the base year 2002, it was estimated that emission reduction rates to achieve the intermediate goal in 2007 were 14.2% and 16.6% for NOx and $PM_{10}$, respectively. It was also estimated that 52% of NOx and 48% of $PM_{10}$ reductions from the base year 2002 would be required to accomplish the air quality improvement goal of 22 ppb for $NO_2$, and $40mg/m^3$ for $PM_{10}$ in year 2014. To improve $NO_2$ and $PM_{10}$ concentration through emissions reduction policies, it was found that emissions reduction for the on-road mobile sources would be the most effective in SMA.

Effect of Attitudinal Factors on Stated Preference of Low-carbon Transportation Services (개인성향 요인이 탄소저감형 교통서비스 잠재선호에 미치는 영향에 관한 연구)

  • Yoonhee Lee;Gyeongjae Lee;Sangho Choo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.49-65
    • /
    • 2023
  • In response to the growing global concern for the environment, the international community has recently committed to achieving 'carbon neutrality.' As a result, numerous studies have been conducted on mode choice models that include carbon emissions as a variable. However, few studies have established a correlation between individual preferences and carbon emissions. In this study, a new mode of transportation named sustainable public transit (SPT), incorporating carbon-reducing transport options like electric scooters, is proposed. Analyzing the individual preferences of commuters on carbon emissions through factor analysis, a stated preference (SP) survey was conducted. A mode choice model for SPT was constructed using multinomial logit models. The results of the analysis showed that gender, income, and specific preferences, such as a passion for exploring new routes, a preference for intermodal transfers, knowledge of carbon reduction, and carbon reduction practices, significantly influence latent preferences for SPT. Therefore, this study is significant as it considers carbon emissions as an attribute variable during the construction of mode choice models and reflects the individual preference variables associated with carbon reduction.

Calculation and Projection of Methane Emissions from Waste Landfill for GHG Emission Reduction: Case Study of Puerto Cortes Landfill in Honduras (폐기물 매립지의 온실가스 감축을 위한 메탄가스 배출량 평가: 온두라스 Puerto Cortes 매립장 사례 분석)

  • Choong Gon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.13-19
    • /
    • 2024
  • The objective of this study was to assess the feasibility of a landfill project aimed at reducing greenhouse gas (GHG) from Puerto Cortes Landfill in Honduras ("Project"). The feasibility study involved surveying the status, composition and amount of waste entering the landfill, and projecting GHG emissions from the landfill. A projection of the GHG emissions with the IPCC model and based on the survey results indicated that the period 2027 to 2041 would see a total GHG emission reduction of 506,835 ton-CO2/year, with a mean yearly GHG emission reduction of 33,789 ton-CO2, assuming landfill gas collection is implemented, The findings of the study are expected to serve as basic data for deciding about whether and how to proceed with the Project.