• Title/Summary/Keyword: Emission wavelength

Search Result 625, Processing Time 0.03 seconds

Luminescence and Photostimulated Luminescence of $Eu^{2+}$ in Alkaline Earth Chlorides (염화알칼리토금속 화합물에 도핑된 $Eu^{2+}$ 이온의 광발광 및 광자극발광특성)

  • Kim, Sung-Hwan;Kim, Sun-Chil
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.141-145
    • /
    • 2006
  • In this study, $Eu^{2+}$ ion was used as an activator in order to enhance the PL(photoluminescene) and PSL(photostimulated luminescence) intensity of $MCl_2:Eu^{2+}$(M = Ca, Sr, Ba)phosphors and the chracteristics of PL and PSL of the phosphors were investigated. The emission of $MCl_2:Eu^{2+}$(M = Ca, Sr, Ba) phosphors shows a shift wavelength when the host caution changes. The optimal preparing conditions of $CaCl_2:Eu^{2+}$ phosphor were 0.5 mol% of $EuCl_2$ and the sintering temperature were $745^{\circ}C$, 45 min. in $H_2$ atmosphere. The PL and PSL spectra of $CaCl_2:Eu^{2+}$ locate in the range of $365{\sim}388\;nm$, peaking at 370 and 380 nm. The optimal preparing conditions of $BaCl_2:Eu^{2+}$ phosphor were 0.5 mol% of $EuCl_2$ and the sintering temperature were $905^{\circ}C$, 45 min. in $H_2$ atmosphere. The PL and PSL spectra of $BaCl_2:Eu^{2+}$ locate in the range of $370{\sim}460\;nm$, peaking at 398 nm. The optimal preparing conditions of $SrCl_2:Eu^{2+}$ phosphor were 0.5mol% of $EuCl_2$ and the sintering temperature were $840^{\circ}C$, 45min. in $H_2$ atmosphere. The PL and PSL spectra of $SrCl_2:Eu^{2+}$ locate in the range of $380{\sim}440\;nm$, peaking at 407 nm. The dose response of the $MCl_2:Eu^{2+}$(0.5 mol%)(M = Ba, Sr) phosphors were linear within $0.25{\sim}200\;mGy$ of 100 kV X-ray and the PSL intensity of the $SrCl_2:Eu^{2+}$ and $BaCl_2:Eu^{2+}$ phosphors faded to approximately 60 and 40% respectively after 120 min at room temperature.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Growth Temperature Effects of In0.5Al0.5As Buffer Layer on the Optical Properties of In0.5Ga0.5As/In0.5Al0.5As Multiple Quantum Wells Grown on GaAs (GaAs 기판 위에 성장한 In0.5Ga0.5As/In0.5Al0.5As 다중양자우물의 광학적 특성에 대한 In0.5Al0.5As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Oh, H.J.;Ahn, S.W.;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.211-216
    • /
    • 2010
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.5}Al_{0.5}As$ buffer layers have been studied by using photoluminescence (PL) and time-resolved PL measurements. A$1-{\mu}m$ thick $In_{0.5}Al_{0.5}As$ buffer layers were deposited on a 500 nm thick GaAs layer, followed by the deposition of the InGaAs/InAlAs MQWs. In order to investigate the effects of InAlAs buffer layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of InAlAs buffer layer. The growth temperature for InAlAs buffer layer was varied from 320^{\circ}C to $580^{\circ}C$. The MQWs consist of three $In_{0.5}Ga_{0.5}$As wells with different well thicknesses (2.5 nm, 4.0 nm, and 6.0 nm thick) and 10 nm thick $In_{0.5}Al_{0.5}$As barriers. The PL spectra from the MQWs with InAlAs layer grown at lower temperature range ($320-580^{\circ}C$) showed strong peaks from 4 nm QW and 6 nm QW. However, for the MQWs with InAlAs buffer grown at higher temperature range ($320-480^{\circ}C$), the PL spectra only showed a strong peak from 6 nm QW. The strongest PL intensity was obtained from the MQWs with InAlAs layer grown at the fixed temperature of $480^{\circ}C$, while the MQWs with buffer layer grown at higher temperature from $530^{\circ}C$ to $580^{\circ}C$ showed the weakest PL intensity. From the emission wavelength dependence of PL decay times, the fast and slow decay times may be related to the recombination of carriers in the 4 nm QW and 6 nm QW, respectively. These results indicated that the growth temperatures of InAlAs layer affect the structural and optical properties of the MQWs.

Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures (InGaAs/InAlAs 양자우물구조의 발광특성에 대한 In0.4Al0.6As 버퍼층 성장온도의 영향)

  • Kim, Hee-Yeon;Ryu, Mee-Yi;Lim, J.Y.;Shin, S.H.;Kim, S.Y.;Song, J.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.6
    • /
    • pp.449-455
    • /
    • 2011
  • The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.4}Al_{0.6}As$ buffer layer have been investigated by using photoluminescence (PL) and time-resolved PL measurements. A 1-${\mu}m$-thick $In_{0.4}Al_{0.6}As$ buffer layers were deposited at various temperatures from $320^{\circ}C$ to $580^{\circ}C$ on a 500-nm-thick GaAs layer, and then 1-${\mu}m$-thick $In_{0.5}Al_{0.5}As$ layers were deposited at $480^{\circ}C$, followed by the deposition of the InGaAs/InAlAs MQWs. In order to study the effects of $In_{0.4}Al_{0.6}As$ layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of $In_{0.4}Al_{0.6}As$ buffer layer. The MQWs consist of three $In_{0.5}Al_{0.5}As$ wells with different well thicknesses (2.5-nm, 4.0-nm, and 6.0-nm-thick) and 10-nm-thick $In_{0.5}Al_{0.5}As$ barriers. The PL peaks from 4-nm QW and 6-nm QW were observed. However, for the MQWs on the $In_{0.4}Al_{0.6}As$ layer grown by using the largest growth temperature variation (320-$580^{\circ}C$), the PL spectrum only showed a PL peak from 6-nm QW. The carrier decay times in the 4-nm QW and 6-nm QW were measured from the emission wavelength dependence of PL decay. These results indicated that the growth temperatures of $In_{0.4}Al_{0.6}As$ layer affect the optical properties of the MQWs.

Quantitative Elemental Analysis in Soils by using Laser Induced Breakdown Spectroscopy(LIBS) (레이저유도붕괴분광법을 활용한 토양의 정량분석)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Lee, Jeong-Tae;Hwang, Seon-Woong;Jin, Yong-Ik;Park, Chan-Won;Moon, Yong-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.399-407
    • /
    • 2009
  • Laser induced breakdown spectroscopy(LIBS) is an simple analysis method for directly quantifying many kinds of soil micro-elements on site using a small size of laser without pre-treatment at any property of materials(solid, liquid and gas). The purpose of this study were to find an optimum condition of the LIBS measurement including wavelengths for quantifying soil elements, to relate spectral properties to the concentration of soil elements using LIBS as a simultaneous un-breakdown quantitative analysis technology, which can be applied for the safety assessment of agricultural products and precision agriculture, and to compare the results with a standardized chemical analysis method. Soil samples classified as fine-silty, mixed, thermic Typic Hapludalf(Memphis series) from grassland and uplands in Tennessee, USA were collected, crushed, and prepared for further analysis or LIBS measurement. The samples were measured using LIBS ranged from 200 to 600 nm(0.03 nm interval) with a Nd:YAG laser at 532 nm, with a beam energy of 25 mJ per pulse, a pulse width of 5 ns, and a repetition rate of 10 Hz. The optimum wavelength(${\lambda}nm$) of LIBS for estimating soil and plant elements were 308.2 nm for Al, 428.3 nm for Ca, 247.8 nm for T-C, 438.3 nm for Fe, 766.5 nm for K, 85.2 nm for Mg, 330.2 nm for Na, 213.6 nm for P, 180.7 nm for S, 288.2 nm for Si, and 351.9 nm for Ti, respectively. Coefficients of determination($r^2$) of calibration curve using standard reference soil samples for each element from LIBS measurement were ranged from 0.863 to 0.977. In comparison with ICP-AES(Inductively coupled plasma atomic emission spectroscopy) measurement, measurement error in terms of relative standard error were calculated. Silicon dioxide(SiO2) concentration estimated from two methods showed good agreement with -3.5% of relative standard error. The relative standard errors for the other elements were high. It implies that the prediction accuracy is low which might be caused by matrix effect such as particle size and constituent of soils. It is necessary to enhance the measurement and prediction accuracy of LIBS by improving pretreatment process, standard reference soil samples, and measurement method for a reliable quantification method.