DOI QR코드

DOI QR Code

Growth Temperature Effects of In0.4Al0.6As Buffer Layer on the Luminescence Properties of InGaAs/InAlAs Quantum Well Structures

InGaAs/InAlAs 양자우물구조의 발광특성에 대한 In0.4Al0.6As 버퍼층 성장온도의 영향

  • Kim, Hee-Yeon (Department of Physics, Kangwon National University) ;
  • Ryu, Mee-Yi (Department of Physics, Kangwon National University) ;
  • Lim, J.Y. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Shin, S.H. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Kim, S.Y. (Nano-Science Research Division, Korea Institute of Science and Technology) ;
  • Song, J.D. (Nano-Science Research Division, Korea Institute of Science and Technology)
  • 김희연 (강원대학교 물리학과) ;
  • 류미이 (강원대학교 물리학과) ;
  • 임주영 (한국과학기술연구원 나노과학연구본부) ;
  • 신상훈 (한국과학기술연구원 나노과학연구본부) ;
  • 김수연 (한국과학기술연구원 나노과학연구본부) ;
  • 송진동 (한국과학기술연구원 나노과학연구본부)
  • Received : 2011.08.04
  • Accepted : 2011.10.06
  • Published : 2011.11.30

Abstract

The luminescence properties of $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ multiple quantum wells (MQWs) grown on $In_{0.4}Al_{0.6}As$ buffer layer have been investigated by using photoluminescence (PL) and time-resolved PL measurements. A 1-${\mu}m$-thick $In_{0.4}Al_{0.6}As$ buffer layers were deposited at various temperatures from $320^{\circ}C$ to $580^{\circ}C$ on a 500-nm-thick GaAs layer, and then 1-${\mu}m$-thick $In_{0.5}Al_{0.5}As$ layers were deposited at $480^{\circ}C$, followed by the deposition of the InGaAs/InAlAs MQWs. In order to study the effects of $In_{0.4}Al_{0.6}As$ layer on the optical properties of the MQWs, four different temperature sequences are used for the growth of $In_{0.4}Al_{0.6}As$ buffer layer. The MQWs consist of three $In_{0.5}Al_{0.5}As$ wells with different well thicknesses (2.5-nm, 4.0-nm, and 6.0-nm-thick) and 10-nm-thick $In_{0.5}Al_{0.5}As$ barriers. The PL peaks from 4-nm QW and 6-nm QW were observed. However, for the MQWs on the $In_{0.4}Al_{0.6}As$ layer grown by using the largest growth temperature variation (320-$580^{\circ}C$), the PL spectrum only showed a PL peak from 6-nm QW. The carrier decay times in the 4-nm QW and 6-nm QW were measured from the emission wavelength dependence of PL decay. These results indicated that the growth temperatures of $In_{0.4}Al_{0.6}As$ layer affect the optical properties of the MQWs.

$In_{0.4}Al_{0.6}As$ 버퍼층의 성장온도 변화에 따른 $In_{0.5}Ga_{0.5}As/In_{0.5}Al_{0.5}As$ 다중양자우물(multiple quantum wells, MQWs)의 광학적 특성을 포토루미네션스(photoluminescence, PL)와 시간분해 포토루미네션스(time-resolved PL, TRPL) 측정을 이용하여 분석하였다. $In_{0.4}Al_{0.6}As$ 버퍼층은 기판의 온도를 $320^{\circ}C$에서 $580^{\circ}C$까지 다양하게 변화시키며 $1{\mu}m$ 성장하였으며, 그 위에 $In_{0.5}Al_{0.5}As$ 층을 $480^{\circ}C$에서 $1{\mu}m$ 성장한 후 InGaAs/InAlAs MQWs을 성장하였다. MQWs는 6-nm, 4-nm, 그리고 2.5-nm 두께의 $In_{0.5}Ga_{0.5}As$ 양자우물과 10-nm 두께의 $In_{0.5}Al_{0.5}As$ 장벽으로 이루어졌다. 4-nm QW과 6-nm QW로부터 PL 피크가 나타났으나, $In_{0.4}Al_{0.6}As$ 성장온도 변화가 가장 큰($320^{\circ}C$에서 $580^{\circ}C$까지 변화) 시료는 6-nm QW에서의 PL 피크만 나타났다. 낮은 온도($320^{\circ}C$에서 $480^{\circ}C$까지 변화)에서 성장한 $In_{0.4}Al_{0.6}As$ 버퍼층 위에 성장한 MQWs의 PL 특성이 우수하게 나타났다. 발광파장에 따른 TRPL 결과로 4-nm QW과 6-nm QW에서의 캐리어 소멸시간을 얻었다.

Keywords

References

  1. L. J. Cui, Y. P. Zeng, B. Q. Wang, J. Wu, Z. P. Zhu, and L. Y. Lin, J. Appl. Phys. 91, 2429 (2002). https://doi.org/10.1063/1.1433174
  2. X. Z. Shang, J. Wu, W. C. Wang, W. X. Wang, Q. Huang, and J. M. Zhou, Solid-State Electron. 51, 85 (2007). https://doi.org/10.1016/j.sse.2006.11.003
  3. I. Tangring, S. M. Wang, M. Sadeghi, Q. F. Gu, and A. Larsson, J. Cryst. Growth 281, 220 (2005). https://doi.org/10.1016/j.jcrysgro.2005.04.019
  4. K. S. Joo, S. H. Chun, J. Y. Lim, J. D. Song, and J. Y. Chang, Physica. E. 40, 2874 (2008). https://doi.org/10.1016/j.physe.2008.01.014
  5. J. Cho, S. Kim, S. Hwangboe, J. Janng, H. Choi, and M. Jeon, J. Korean Vaccum Soc. 18, 352 (2009). https://doi.org/10.5757/JKVS.2009.18.5.352
  6. I. K. Han and J. I. Lee, J. Korean Vaccum Soc. 18, 468 (2009). https://doi.org/10.5757/JKVS.2009.18.6.468
  7. J. -I. Chyi, J .-L. Shieh, J. -W. Pan, and R.-M. Lin, J. Appl. Phys. 79, 8367 (1996). https://doi.org/10.1063/1.362555
  8. Y. Cordier and D. Ferre, J. Cryst. Growth 201/202, 263 (1999). https://doi.org/10.1016/S0022-0248(98)01336-0
  9. A. Sayari, N. Yahyaoui, A. Meftah, A. Sfaxi, and M. Oueslati, J. Lumin. 129, 105 (2009). https://doi.org/10.1016/j.jlumin.2008.09.004
  10. J. C. Harmand, T. Matsuno, and K. Inoue, Jpn. J. Appl. Phys. 29, 233 (1990). https://doi.org/10.1143/JJAP.29.L233
  11. H. Y. Kim, H. J. Oh, S. W. Ahn, M. -Y. Ryu, J. Y. Lim, S. H. Shin, S. Y. Kim, and J. D. Song, J. Korean Vaccum Soc. 19, 211 (2010). https://doi.org/10.5757/JKVS.2010.19.3.211

Cited by

  1. Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.321