• 제목/요약/키워드: Emission wavelength

검색결과 625건 처리시간 0.056초

Current Status and Future Prospects of High-Power Free Electron Lasers

  • Miginsky, Sergey
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.44-44
    • /
    • 2003
  • Free electron lasers (FEL) have, at least, the following advantages in comparison to conventional lasers: FEL can be designed for any arbitrary given emission wavelength. It is continuously tunable within wide band. Easy to get single-mode emission. Easily controlled emission structure (pulse duration, repetition rate, and pulse energy). (omitted)

  • PDF

Photoluminescence of SrO-$Al_2O_3$ Doped with Eu and Ce Excited at near UV

  • Han, Sang-Hyuk;Kim, Young-Jin;Chung, Sung-Mook
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.654-656
    • /
    • 2004
  • The effect of excitation energy and various dopants(Eu and Ce) on the emission wavelength and intensity were investigated. According to PL spectra, SrO-$Al_2O_3$ phosphors had wide absorption band at nUV. By substituting Ce for Eu, the emission band and excitation wavelength were shifted to shorter wavelength. Ce doped $SrAl_2O_4$ and $Sr_4Al_{14}O_{25}$ showed greenish blue(475nm) and blue(400nm), respectively.

  • PDF

간편한 CdSe 나노 입자의 합성: 입자크기를 결정하는 반응온도의 효과 (Easy and Simple Synthesis of CdSe Nanocrystals: The Effect of Reaction Temperature for The Determination of Nanoparticle Size)

  • 김성진
    • 통합자연과학논문집
    • /
    • 제2권3호
    • /
    • pp.219-223
    • /
    • 2009
  • Easy and simple synthesis of CdSe nanocrystals was achieved through sol-gel process. CdSe nanocrystals were synthesized from the reaction of cadmium oxide and selenium in the prescence of trioctylphosphine oxide, tributylphosphine, octadecene, octadecylamine, and stearic acid. The effect of reaction temperature for the determination of size of CdSe nanocrystals was investigated after the addition of selenium. The reaction temperature for the growth of CdSe nanocrystals was increased by every $20^{\circ}C$ from 170 to 190, 210, 230, 250, 270, and $290^{\circ}C$. When the reaction temperature was higher, the absorption wavelength in the absorption spectrum was increased which indicated that the size of CdSe nanocrystals was increased. The emission wavelength in the photoluminescence spectrum was increased from 438 to 489, 542, 591, 643, 692, and 745 nm, as the size of CdSe nanocrystals was increased. The control of the reaction temperature illustrated that the color tuning of emission wavelength were successfully obtained.

  • PDF

Visible Wavelength Photonic Insulator for Enhancing LED Light Emission

  • Ryoo, Kwangki;Lee, Jeong Bong
    • Journal of information and communication convergence engineering
    • /
    • 제13권1호
    • /
    • pp.50-55
    • /
    • 2015
  • We report design and simulation of a two-dimensional (2D) silicon-based nanophotonic crystal as an optical insulator to enhance the light emission efficiency of light-emitting diodes (LEDs). The device was designed in a manner that a triangular array silicon photonic crystal light insulator has a square trench in the middle where LED can be placed. By varying the normalized radius in the range of 0.3-0.5 using plane wave expansion method (PWEM), we found that the normalized radius of 0.45 creates a large band gap for transverse electric (TE) polarization. Subsequently a series of light propagation simulation were carried out using 2D and three-dimensional (3D) finite-difference time-domain (FDTD). The designed silicon-based light insulator device shows optical characteristics of a region in which light propagation was forbidden in the horizontal plane for TE light with most of the visible light spectrum in the wavelength range of 450 nm to 600 nm.

Oxygen Plasma Characterization Analysis for Plasma Etch Process

  • Park, Jin-Su;Hong, Sang-Jeen
    • 동굴
    • /
    • 제78호
    • /
    • pp.29-31
    • /
    • 2007
  • This paper is devoted to a study of the characterization of the plasma state. For the purpose of monitoring plasma condition, we experiment on reactive ion etching (RIE) process. Without actual etch process, generated oxygen plasma, measurement of plasma emission intensity. Changing plasma process parameters, oxygen flow, RF power and chamber pressure have controlled. Using the optical emission spectroscopy (OES), we conform to the unique oxygen wavelength (777nm), the most powerful intensity region of the designated range. Increase of RF power and chamber pressure, emission intensity is increased. oxygen flow is not affect to emission intensity.

전면 유기 발광 소자의 유기물층 두께 변화에 따른 광학적 특성 (Organic-layer thickness dependent optical properties of top emission organic light-eitting diodes)

  • 안희철;주현우;나수환;김태완;홍진웅;오용철;송민종
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.413-414
    • /
    • 2008
  • We have studied an organic layer thickness dependent optical properties and microcavity effects for top-emission organic light-emitting diodes. Manufactured top emission device, structure is Al(100nm)ITPD(xnm)/$Alq_3$(ynm)/LiF(0.5nm)/Al(23nm). While a thickness of hole-transport layer of TPD was varied from 35 to 65nm, an emissive layer thickness of $Alq_3$ was varied from 50 to 100nm for two devices. A ratio of those two layers was kept to about 2:3. Variation of the layer thickness changes a traverse time of injected carriers across the organic layer, so that it may affect on the chance of probability of exciton formation. View-angle dependent emission spectra were measured for the optical measurements. Top-emission devices show that the emission peak wavelength shifts to longer wavelength as the organic layer thickness increases. For instance, it shifts from 490 to 555nm in the thickness range that we used. View-angle dependent emission spectra show that the emission intensity decreases as the view-angle increases. The organic layer thickness-dependent emission spectra show that the full width at half maximum decreases as the organic layer thickness increases. Top emission devices show that the full width at half maximum changes from 90 to 35nm as the organic layer thickness increases. In top-emission device, the microcavity effect is more vivid as the organic layer thickness increases.

  • PDF

$Eu^{3+}$가 첨가된 광변환 유리의 특성과 효과연구 1(유리의 제조와 특성) (Characteristics of Photo-conversion Glass with $Eu^{3+}$ and Its Use 1 (Glass Production and Photo-conversion Characteristics))

  • 정헌생;안양규;길대섭
    • 한국태양에너지학회 논문집
    • /
    • 제22권4호
    • /
    • pp.44-50
    • /
    • 2002
  • Photosynthesis of plants is effective in the range of 550 to 700 nm of the wavelength of solar irradiation. If the conversion of ultraviolet to the above mentioned region is possible, the photosynthesizing ability is expected to be enhanced. $Eu^{3+}$ doped soda-lime bulk and $TiO_2-SiO_2$ sol-gel coated glasses were prepared and their spectroscopic properties were studied. The absorption and emission spectra for the specimens were measured with the changes of wavelength and Eu ion concentration in the range of the wavelength of 300 to 700nm. The transmittance intensity of visible light through the bulk glass and the coated one was unchanged with the addition of Eu element. The emission spectrum intensity of $Eu^{3+}$ was found to be the maximum at 618 nm which is a transition of $^5DO{\rightarrow}^7F_2$. Additionally, it was shown that the intensity was linearly increased up to 10% of the Eu concentration.

Influence of the Composition of Shell Layers on the Photoluminescence of Cu0.2InS2 Semiconductor Nanocrystals with a Core-shell Structure

  • Kim, Young-Kuk;Ahn, Si-Hyun;Cho, Young-Sang;Chung, Kookchae;Choi, Chul-Jin;Shin, Pyung-Woo
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.900-904
    • /
    • 2011
  • We have synthesized core-shell structured nanocrystals based on chalcopyrite-type $Cu_{0.2}InS_2$. The photoluminescence of the nanocrystals shows a significant blueshift in the emission wavelength by shell capping with ZnS layers. This shift can be explained with the compressive stress to core nanocrystals applied by the formation of a ZnS shell layer with a large lattice mismatch with the core. In this study, the emission wavelength could be tuned by changing the composition of the shell layers. Nanocrystals with emission wavelength ranging from 575 nm through 630 nm were synthesized by varying the portion of cadmium compared with zinc in the shell layers.

Rietveld refinement study on variation of emission wavelength of $(Sr_{1-x},Ca_x)_2MgSi_2O_7:Eu^{2+}$ phosphor for white LED applications

  • Kwon, Ki-Hyuk;Im, Won-Bin;Jang, Ho-Seong;Yoo, Hyoung-Sun;Jeon, Duk-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.565-568
    • /
    • 2008
  • In this study, a blue-emitting $Sr_2MgSi_2O_7:Eu^{2+}$ (SMS) phosphor for white light-emitting diodes is reported. Through transition of $4f{\rightarrow}5d$ in $Eu^{2+}$, SMS showed a strong blue emission under UV excitation. Additionally, the variation of emission wavelength of SMS is explained by crystal field effect and is supported by rietveld refinement.

  • PDF

PLD로 증착한 ZnO 박막의 발광 특성 분석 (Emission Properties of ZnO Grown by PLD)

  • 배상혁;이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.422-424
    • /
    • 2000
  • ZnO thin films for light emission device have been deposited on sapphire and silicon substrates by pulsed laser deposition technique(PLD). A Nd:YAG laser was used with the wavelength of 355 nm. In order to investigate the emission properties of ZnO thin films, PL measurements with an Ar ion laser as a light source using an excitation wavelength of 351 nm and a power of 100 mW are used. All spectra were taken at room temperature by using a grating spectrometer and a photomultiplier detector. ZnO exhibited PL bands centered around 390, 510 and 640 nm, labeled near ultra-violet (UV), green and orange bands. Structural properties of ZnO thin films are analized with X-ray diffraction (XRD).

  • PDF