• Title/Summary/Keyword: Emission spectroscopy

Search Result 1,166, Processing Time 0.036 seconds

The Etching Characteristics of Cr Films by Using $Cl_{2}O_{2}$ Gas Mixtures ($Cl_{2}O_{2}$ 가스에 의한 크롬 박막의 식각 특성 고찰)

  • 박희찬;강승열;이상균;최복길;권광호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.634-639
    • /
    • 2001
  • We investigated the etching characteristics of chromium films by using Cl$_2$/O$_2$ gas mixtures with electron cyclotron resonance plasma. In order to examine the chemical etch characteristics of Cr films by using Cl$_2$/O$_2$ gas plasma, we obtained the etch rate with various gas mixing ratios. By X-ray photoelectron spectroscopy, the surface reaction on the chromium films during the etch was examined. From narrow scan analyses of Cr, Cl, and O, it was confirmed that a chromium oxychlorie (CrCl$_{x}$O$_{y}$) layer was formed on the surface by the etch using Cl$_2$/O$_2$ gas mixtures. We observed a new characteristic emission line during the etch of chromium films using Cl$_2$/O$_2$ gas mixtures by an optical emission spectroscopy. It was found that the peak intensity of this emission line had a tendency compatible with the etch rate. The origin of this emission line was discussed in detail. At the same time, the etched profile was also examined by scanning electron microscope.e.e.

  • PDF

Relative Transmittance and Emission Intensity of Optical Emission Spectroscopy for Fault Detection Application of Reactive Ion Etching (Reactive Ion Etching에서 Optical Emission Spectroscopy의 투과율과 강도를 이용한 에러 감지 기술 제안)

  • Park, Jin-Su;Mun, Sei-Young;Cho, Il-Hwan;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.473-474
    • /
    • 2008
  • This paper proposes that the relative transmittance and emission intensity measured via optical emission spectroscopy (OES) is a useful for fault detection of reactive ion etch process. With the increased requests for non-invasive as well as real-time plasma process monitoring for fault detection and classification (FDC), OES is suggested as a useful diagnostic tool that satisfies both of the requirements. Relative optical transmittance and emission intensity of oxygen plasma acquired from various process conditions are directly compared with the process variables, such as RF power, oxygen flow and chamber pressure. The changes of RF power and Pressure are linearly proportional to the emission intensity while the change of gas flow can be detected with the relative transmittance.

  • PDF

The Influence of Radiation Trapping on the Metastable Population Density and Applications to Low-pressure Plasma

  • Lee, Yeong-Gwang;O, Se-Jin;Jeong, Jin-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.245-246
    • /
    • 2011
  • Emission lines ratios were used for diagnostics of and excited level densities in low-temperature plasmas. In this work, an optical emission spectroscopy (OES) was used to determine the electron temperature and metastable level densities in low-pressure inductively coupled plasma. The emission spectroscopy method was based on a simple collisional-radiative model. The selected lines of the Ar(4p to 4s) were influenced by the radiation trapping at relatively high pressures where the plasma become optically thick. To quantify this effect, a pressure dependence factor ${\alpha}$(P) was derived by using corrections for the measured intensities. It was found that the lower metastable level densities were obtained when ${\alpha}$(P) increased with the increasing discharge pressure. The effect of non-Maxwellian electron energy distribution functions (EEDFs) on the metastables was also presented and discussed.

  • PDF

Plasma monitoring using optical emission spectroscopy and expert system (광반사분광기와 전문가 시스템을 이용한 플라즈마 감시)

  • Kim, Dae-Hyeon;Kim, Byeong-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.235-236
    • /
    • 2009
  • 본 연구에서는 Optical emission spectroscopy (OES)에 CUSUM과 전문가 시스템을 이용하여 플라즈마를 감시하는 기법을 개발하였다. CUSUM과 Dempster-Shafer를 이용하여 고장에 민감한 OES파장을 추출하였으며, 추출된 파장은 플라즈마 감시에 이용될 것으로 기대된다.

  • PDF

투명 유연 AMOLED TV 구현을 위한 증착형 SnO2/Ag-Pd-Cu(APC)/SnO2 다층 투명 캐소드 박막 연구

  • Kim, Du-Hui;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.181.2-181.2
    • /
    • 2016
  • OLED 소자는 발광 방향에 따라 Bottom Emission 방식과 Top Emission 방식으로 나뉜다. 이 중 대면적 OLED TV 적용에 개구율이 더 높은 Top Emission방식을 선호하는 추세이다. 높은 개구율을 가진 Top Emission OLED소자를 위해서는 투명하고 전도성이 높은 캐소드가 중요하다. 본 연구에서는 Themal Evaporation 시스템을 이용하여 증착한 $SnO_2/Ag-Pd-Cu(APC)/SnO_2$ hybrid 전극의 특성을 연구하고 Oxide/Metal/Oxide(OMO) hybrid 박막의 bending mechanism을 제시하였다. base pressure는 $1{\times}10^{-6}Torr$로 고정하고 $SnO_2$ 박막은 0.34A / 0.32V, APC 박막은 0.46A / 0.40V의 power로 성막하였다. APC와 $SnO_2$의 두께를 변수로 OMO 전극을 제작하였고 그 전기적, 광학적 특성을 Hall measurement, UV/Visible spectroscopy을 이용하여 분석하고 Figure of merit 값을 바탕으로 최적 두께를 설정하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석으로 $SnO_2/APC/SnO_2$ 전극의 일함수을 통해 투명 cathode로 쓰였을 때 $SnO_2$ 층이 buffer layer역할을 함을 확인하였다. XPS(X-ray photoelectron spectroscopy)를 이용하여 정성분석과 정량분석을 하였고 OMO hybrid 전극의 bending mechanism 연구를 위해 다양한 bending test (Inner/Outer dynamic fatigue test, twisting test, rolling test)를 진행하였다. 물리적 힘이 가해진 OMO hybrid 전극의 표면과 구조는 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 확인할 수 있었다.

  • PDF

Quantitative Analysis for Plasma Etch Modeling Using Optical Emission Spectroscopy: Prediction of Plasma Etch Responses

  • Jeong, Young-Seon;Hwang, Sangheum;Ko, Young-Don
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.392-400
    • /
    • 2015
  • Monitoring of plasma etch processes for fault detection is one of the hallmark procedures in semiconductor manufacturing. Optical emission spectroscopy (OES) has been considered as a gold standard for modeling plasma etching processes for on-line diagnosis and monitoring. However, statistical quantitative methods for processing the OES data are still lacking. There is an urgent need for a statistical quantitative method to deal with high-dimensional OES data for improving the quality of etched wafers. Therefore, we propose a robust relevance vector machine (RRVM) for regression with statistical quantitative features for modeling etch rate and uniformity in plasma etch processes by using OES data. For effectively dealing with the OES data complexity, we identify seven statistical features for extraction from raw OES data by reducing the data dimensionality. The experimental results demonstrate that the proposed approach is more suitable for high-accuracy monitoring of plasma etch responses obtained from OES.

Neural Network-based Time Series Modeling of Optical Emission Spectroscopy Data for Fault Prediction in Reactive Ion Etching

  • Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.131-135
    • /
    • 2023
  • Neural network-based time series models called time series neural networks (TSNNs) are trained by the error backpropagation algorithm and used to predict process shifts of parameters such as gas flow, RF power, and chamber pressure in reactive ion etching (RIE). The training data consists of process conditions, as well as principal components (PCs) of optical emission spectroscopy (OES) data collected in-situ. Data are generated during the etching of benzocyclobutene (BCB) in a SF6/O2 plasma. Combinations of baseline and faulty responses for each process parameter are simulated, and a moving average of TSNN predictions successfully identifies process shifts in the recipe parameters for various degrees of faults.

  • PDF

Deposition of Carbon Thin Film using Laser Ablation and Its Field Emission Properties (레이저 증착법에 의한 탄소계 박막의 구조 및 전계방출특성)

  • ;Kenjiro Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.634-639
    • /
    • 2002
  • Using laser ablation technique carbon thin films were deposited on Si(100) substrate as a function of substrate temperature. In this study, the surface morphologic, structural and field emission properties of these carbon thin films were investigated using Raman spectroscopy, scanning electron microscopy, and a diode technique, respectively. With increasing of the substrate temperature, the surface morphologies were changed significantly. Moreover, the intensity of D-band and the full width at half maximum of these bands were dependent on substrate temperatures. As the substrate temperature was increased, the field emission properties were improved. As the result, we find that the field emission properties of the films were changed significantly with the substrate temperature and structural features of carbon than films.

RF Plasma Processes Monitoring for Fluorocarbon Polluted Plasma Chamber Cleaning by Optical Emission Spectroscopy and Multivariate Analysis (Optical Emission Spectra 신호와 다변량분석기법을 통한 Fluorocarbon에 의해 오염된 반응기의 RF 플라즈마 세정공정 진단)

  • Jang, Hae-Gyu;Lee, Hak-Seung;Chae, Hui-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.242-243
    • /
    • 2015
  • Fault detection using optical emission spectra with modified K-means cluster analysis and principal component anal ysis are demonstrated for inductive coupl ed pl asma cl eaning processes. The optical emission spectra from optical emission spectroscopy (OES) are used for measurement. Furthermore, Principal component analysis and K-means cluster analysis algorithm is modified and applied to real-time detection and sensitivity enhancement for fluorocarbon cleaning processes. The proposed techniques show clear improvement of sensitivity and significant noise reduction when they are compared with single wavelength signals measured by OES. These techniques are expected to be applied to various plasma monitoring applications including fault detections as well as chamber cleaning endpoint detection.

  • PDF

Study on optical emission spectroscopic method for measuring OH radical distribution in rocket plume (로켓 플룸 내부 OH 라디칼 공간분포 계측을 위한 발광 분광 기법에 관한 연구)

  • Han, Kiwook;Hahn, Jae W.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1135-1139
    • /
    • 2017
  • Spatial distribution of chemical species in flame is a important indicator understanding the flame structure and combustion characteristics, and optical emission spectroscopy has been widely used for the measurement because of its simple and non-intrusive methodology. In this study, we suggest the feasibility of the measurement of chemical species (OH radical) distribution in rocket plume using optical emission spectrometer which was developed for the spatially resolved measurement along the line-of-sight. In order to predict the ground state concentration of species from the measured emission intensity by optical emission spectrometer, we consider thermal and chemical excitation mechanisms in flame, and assume thermodynamic equilibrium for the thermally excited species. We also present the spatial resolution and the correction of collection characteristics of the optical emission spectrometer depending on object distance.

  • PDF