• 제목/요약/키워드: Emission current

검색결과 1,490건 처리시간 0.031초

Field Emission Current Enhancement in CNTs by Laser Irradiation

  • Jeong, Tae-Won;Yu, Se-Gi;Yi, Whi-Kun;Lee, Chang-Soo;Lee, Jeong-Hee;Heo, Jung-Na;Yoo, Ji-Beom;Kim, Won-Seok;Lee, Y.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • 제2권4호
    • /
    • pp.23-28
    • /
    • 2001
  • Field emission characteristics of carbon nanotubes(CNTs) on four kinds of metallic substrates have been investigated under the irradiation of a laser. The field emission measurement reveals that after laser irradiation the current was increased and new humps at the field emission current was found. The current enhancement was thought to have occurred due to the fact that the electrical contact between CNTs and metals was improved due to the irradiation of the laser.

  • PDF

Improving the Long-term Field Emission Stability of Carbon Nanotubes by Coating Co and Ni Oxide Layers

  • 최주성;이한성;이내성
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.18.1-18.1
    • /
    • 2011
  • Some applications of carbon nanotubes (CNTs) as field emitters, such as x-ray tubes and microwave amplifiers, require high current emission from a small emitter area. To emit the high current density, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects including high crystallinity, aspect ratio, distribution density, height uniformity, adhesion on a substrate, low outgassing rate during electron emission in vacuum, etc. In particular, adhesion of emitters on the substrate is one of the most important parameters to be secured for high current field emission from CNTs. So, we attempted a novel approach to improve the adhesion of CNT emitters by incorporating metal oxide layers between CNT emitters. In our previous study, CNT emitters were fabricated on a metal mesh by filtrating the aqueous suspensions containing both highly crystalline thin multiwalled CNTs and thick entangled multiwalled CNTs. However, the adhesion of CNT film was not enough to produce a high emission current for an extended period of time even after adopting the metal mesh as a fixing substrate of the CNT film. While a high current was emitted, some part of the film was shown to delaminate. In order to strengthen the CNT networks, cobalt-nickel oxides were incorporated into the film. After coating the oxide layer, the CNT tips seemed to be more strongly adhered on the CNT bush. Without the oxide layer, the field emission voltage-current curve moved fast to a high voltage side as increasing the number of voltage sweeps. With the cobalt-nickel oxide incorporated, however, the curve does not move after the second voltage sweep. Such improvement of emission properties seemed to be attributed to stronger adhesion of the CNT film which was imparted by the cobalt-nickel oxide layer between CNT networks. Observed after field emission for an extended period of time, the CNT film with the oxide layer showed less damage on the surface caused by high current emission.

  • PDF

CVD법으로 제조한 탄소 나노튜브의 전계 전자 방출 특성 (Properties of Field Emission Electrons for CVD-grown Carbon Nanotubes)

  • 이임렬
    • 한국재료학회지
    • /
    • 제13권7호
    • /
    • pp.424-428
    • /
    • 2003
  • The microstructure and field emission properties of carbon nanotubes(CNT) grown by Ni-catalytic chemical vapor deposition(CVD) were investigated. CVD-grown CNT had a high density of curved shape with randomly oriented. It was found that an increase in electric field caused an increase in field emission current and field emission sites of CNT. The maximum field emission current density was measured to be 3.6 ㎃/$\textrm{cm}^2$ at 2.5 V/$\mu\textrm{m}$, while the brightness of 56 cd/$\textrm{cm}^2$ was observed for the CNT-grown area of 0.8 $\textrm{cm}^2$ from a phosphor screen. Field emission current at constant electric field gradually decreased initially and then stabilized with time.

An a-D film for flat panel displays prepared by FAD

  • Liu, Xianghuai;Mao, Dongsheng
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.7-14
    • /
    • 1998
  • Details are given of an study of the characteristics of field-induced electron emission from hydrogen-free high $sp^3$ content(>90%) amorphous diamond (a-D) film deposited on heavily doped ($\rho$<0.01 $\Omega\cdot\textrm{cm}$) n-type monocrystalline Si(111) substrate. It is demonstrated that a-D film has excellent electron field emission properties. Emission current can reach 0.9 $\mu$A at applied field as low as 1 V/$\mu\textrm{m}$, and emission current density can be obtained about several mA/$\textrm{cm}^2$. The emission current is stable when the beginning current is at 50 $\mu$A within 72 hours. Uniform fluorescence display of electron emission from whole face of the a-D film under the electric field of 10~20 V/$\mu\textrm{m}$ was also observed. It can be considered that the contribution of excellent electron emission property results from its smooth, uniform, amorphous surface and high $sp^3$ content of the a-D films.

  • PDF

진공아크방전으로 제작된 다이아몬드상 탄소 박막이 코팅된 실리콘 전계 방출 소자의 전계 방출 특성 (Field emission properties of the silicon field emission arrays coated with diamond-like carbon film prepared by filtered cathodic vacuum arc technique)

  • 황한욱;김용상
    • 한국전기전자재료학회논문지
    • /
    • 제13권4호
    • /
    • pp.326-331
    • /
    • 2000
  • We have fabricated the field emitter arrays coated with diamond-like carbon (DLC) films that improved the field emission characteristics. The nitrogen doped DLC films are prepared by the filtered cathodic vacuum are (FCVA) tehnique. The activation energy of the nitrogen doped DLC films are derived from electrical conductivity measurements. The silicon field emission arrays (FEAs) were prepared by the VLSI technique. The turn-on field was rapidly decreasing and the emission current was remarkably increasing the DLC-coated FEAs than the non-coated silicon FEAs. In the nitrogen doped FEAs, the turn-on field decreased and the emission current increased with increasing the nitrogen found out the field emission current and the work function of the DLC-coated FEAs was remarkably decreased than that of the non-coated silicon FEAs. As nitrogen doping concentrations are increased the work function of FEAs is decreased and the field emission properties are improved in nitrogen doped DLC-coated FEAs. This phenomenon in due the fact that the Fermi energy level moves to the conduction band by increasing nitrogen doping concentration.

  • PDF

Spindt Cathode Tip Processing to Enhance Emission Stability and High-Current Performance

  • Spindt, C.A.;Schwoebel, P.R.;Holland, C.E.
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.44-47
    • /
    • 2001
  • The extracted field emission current can be used to controllably heat microfabricated cold field emission cathode tips. The heating can be sufficient to smooth and recrystallize the tip surface by surface self-diffusion, and at least partially clean the surface of contaminants by thermal desorption. Self-heating not only allows for the achievement and maintenance of stable emission characteristics, but can be used to make the current-voltage characteristics of microfabricated field emitter tips nearly identical to one another. The resulting improvement in emission uniformity will allow for more reliable array operation at increased electron emission current densities.

  • PDF

Numerical Calculation Study on the Generalized Electron Emission Phenomenon

  • Kim, Hee-Tae;Yu, Soon-Jae
    • Journal of Information Display
    • /
    • 제10권4호
    • /
    • pp.158-163
    • /
    • 2009
  • There are two kinds of well-known electron emissions from metal: field and thermionic emission. For thermionic emission, electrons come out of a metal due to the thermal energy, whereas for field emission, electrons tunnel out of a metal through the strong electric field. In this study, the most general electron emission caused by the temperature and electric field with a free electron gas model was considered. The total current density of electron emission comes from the field emission effect, where the electron energy is lower than vacuum, and from the thermionic-emission effect, where the electron energy is higher than vacuum. The total current density of electron emission is shown as a function of the temperature for a constant electric field, and as a function of the electric field for a constant temperature.

드레인오프셋트 다결정실리콘 박막트랜지스터의 누설전력 해석 (An Analysis on the Leakage Current of Drain-offset Poly-Si TFT′s)

  • 이인찬;김정규;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제14권2호
    • /
    • pp.111-116
    • /
    • 2001
  • Poly-Si TFT's(Polysilicon thin filmtransistors) have been actively studied due to their applications in active matrix liquid crystal displays and active pull-up devices of CMOS SRAM's. For such applications, the leakage current has to be in the range of sub-picoampere. However, poly-Si TFT's suffer from anomalous high leakage currents, which is attributed to the emission of the traps present at gain boundaries in the drain junction. The leakage current has been analyzed by the field emission via grain-boundary traps and thermionic field emission over potential barrier located at the grain boundary. We found that the models proposed before are not consistent with the experimental results at far as drain-offset poly-Si TFT's we fabricated concern. In this paper, leakage current of drain-offset poly-Si TFT's with different offset lengths was studied. A conduction model based on the thermionic emission of the tunneling electrons is developed to identify the leakage mechanism. It was found that the effective grain size of the drain-offset region is important factor in the leakage current. A good agreement between experimental and simulated results of the leakage current is obtained.

  • PDF

CGL의 재료에 따른 청색 형광 Tandem OLED의 발광 특성 (Emission Characteristics of Blue Fluorescence Tandem OLED with Materials of CGL)

  • 곽태호;주성후
    • 한국표면공학회지
    • /
    • 제47권4호
    • /
    • pp.210-214
    • /
    • 2014
  • We investigated emission characteristics of tandem organic light emitting devices (OLEDs) with p-type materials as charge generation layer. The tandem OLEDs were fabricated by using $MoO_x$, $WO_x$, C60 and HATCN as p-type material or not using p-type material for charge generation. When HATCN was used as p-type material, it showed high current density at low applied voltage, but increase of efficiency was small because of charge unbalance in emitting layer. In case of tandem OLED not using p-type material, applied voltage increased remarkably because of difficulty of hole injection. In case of $MoO_x$, $WO_x$ or C60 as p-type material, current emission efficiency increased greatly. In particular, current emission efficiency of tandem OLED using $MoO_x$ as p-type material increased up to 3 times than current emission efficiency of single OLED. The Commission Internationale de l'Eclairage (CIE) 1931 color coordinates were changed by overlapping of 504 nm emission wavelength. As a result, emission efficiency of tandem OLED improved compared with single OLED, but driving voltage also increased by increase of organic layer thickness.

3극 티타늄 실리사이드 전계방출 팁 어레이의 제작 (Fabrication of triode type Ti-silicided field emission tip array)

  • 엄우용
    • 전자공학회논문지 IE
    • /
    • 제44권3호
    • /
    • pp.1-5
    • /
    • 2007
  • Si 팁 기술의 장점을 살리면서 팁을 실리사이드화하여 팁표면의 열화학적 내구성을 증가시키고 전계방출 전류밀도를 금속 팁에 가깝게 끌어올릴 수 있는 새로운 3극관 형태의 전계방출 팁 구조를 제작하였다. 제작된 소자의 전계방출 특성을 $10^{-8}Torr$의 초고진공 상태에서 캐소드-애노드 간격을 $100{\mu}m$로 하여 측정한 결과, turn-on 전압이 약 40V로, 방출전류가 인가 전압 150V에서 약 $69{\mu}A$로 나타났다.