• 제목/요약/키워드: Emission Spectrum

Search Result 713, Processing Time 0.024 seconds

SNR 0104-72.3: A remnant of Type Ia Supernova in a Star-forming region?

  • Lee, Jae-Jun;Park, Sang-Wook;Hughes, John P.;Slane, Patrick;Burrows, David
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.87.2-87.2
    • /
    • 2011
  • We report our 110 ks Chandra observations of the supernova remnant (SNR) 0104-72.3 in the Small Magellanic Cloud (SMC). The X-ray morphology shows two prominent lobes along the northwest-southeast direction and a soft faint arc in the east. Previous low resolution X-ray images attributed the unresolved emission from the southeastern lobe to a Be/X-ray star. Our high resolution Chandra data clearly shows that this emission is diffuse, shock-heated plasma, with negligible X-ray emission from the Be star. The eastern arc is positionally coincident with a filament seen in optical and infrared observations. Its X-ray spectrum is well fit by plasma of normal SMC abundances, suggesting that it is from shocked ambient gas. The X-ray spectra of the lobes show overabundant Fe, which is interpreted as emission from the reverse-shocked Fe-rich ejecta. The overall spectral characteristics of the lobes and the arc are similar to those of Type Ia SNRs, and we propose that SNR 0104-72.3 is the first case for a robust candidate Type Ia SNR in the SMC. On the other hand, the remnant appears to be interacting with dense clouds toward the east and to be associated with a nearby star-forming region. These features are unusual for a standard Type Ia SNR. Our results suggest an intriguing possibility that the progenitor of SNR 0104-72.3 might have been a white dwarf of a relatively young population.

  • PDF

A Study on the Fabrication and Characteristic Analysis of Multiheterostructure White Organic Light Emitting Device (다층구조 배색 유기발전소자의 제작 및 특성 분석에 관한 연구)

  • 노병규;강명구;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.5
    • /
    • pp.429-434
    • /
    • 2002
  • In this paper, multiheterostructure white organic light-emitting device was fabricated by vacuum evaporation. The structure of white organic light-emitting device is ITO/CuPc/TPD/DPBi:DPA/$Alq_3/Alq_3$:DCJTB/BCT/$Alq_3$/Ca/Al. Three primary colors are implemented with DPVBi, Alq$_3$and DCJTB. The maximum EL wavelength of the fabricated white organic light-emitting device is 647nm. And the CIE coordinate is (0.33, 0.33) at 13 V. In the fabrication of white organic light-emitting devices with DCJTB, $Alq_3$, DPVBi, the EL spectrum has two peaks at 492nm, 647nm. Two peaks appeared because the blue light is combined with green light. The maximum wavelength of red light is not changed with applied voltage. After voltage applied, for the first time, the electrons met the holes in the red emission layer and emitted red light. And then the electrons moved to the green emission layer, and blue emission layer continuously. Finally, when all of the emission layer activated, the white light is emitted.

Photoluminescence and Photoluminescence Excitation from Porous Silicon Carbide

  • Lee, Gi Hwan;Ying Lei Du;Lee, Tae Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.8
    • /
    • pp.769-773
    • /
    • 2000
  • The dependence of photoluminescence (PL) and photoluminescence itation (PLE) on preparation condi-tions and the aging of porous silicon carbide (PSC) have been investigatted. The fiber size of the material pre-pared under dark-current mode, labele d DCM, was larger than that of the photoassisted (PA)process.The intensity of the PL spectrum for the PA condition was higher than that of the DCM condition. The PA condition giving small fiber size exhibited amore prominent high-energy component but the emission bands of both con-ditionsobserved were rather similar. The origin of the PL may have played an importantrole in the surface defect center introduced by the reaction conditions ofHFatthe surface of the silicon carbide. Selective excita-tion of the PL bandsusingdifferent excitation wavelengths has been used to identify distinct componentswith-in the PL bandwidth. Two main PL bands with peak wavelength of494 and534 nm were clearly resolved. On the other hand, selectivc emission of the PLEbands using different emission wavelengths has been used to identify distinct components within the PLE bandwidth. The higher energy band with peak wavelength of 338 nm and the lower energy bands involving 390,451 and 500 nm were clearly resolved. According to the pro-ionged aging in air, PL spectra appearedasone band, This emission probably originated from states localized to the band-to-band recombination due to the oxidation on the crystallite surface.

THERMAL AND NON-THERMAL RADIO CONTINUUM SOURCES IN THE W51 COMPLEX

  • MOON DAE-SIK;KOO BON-CHUL
    • Journal of The Korean Astronomical Society
    • /
    • v.27 no.1
    • /
    • pp.81-102
    • /
    • 1994
  • We have decomposed the 11-cm radio continuum emission of the W51 complex into thermal and non-thermal components. The distribution of the thermal emission has been determined by analyzing HI, CO, and IRAS $60-{\mu}m$ data. We have found a good correlation between the 11-cm thermal continuum and the 60- 11m emissions, which is used to obtain the thermal and non-thermal 11-cm continuum maps of the W51 complex. Most of the thermal continuum is emanating from the compact H II regions and their low-density ionized envelopes in W51A and W51B. All the H II regions, except G49.1-0.4 in W51B, have associated molecular clumps. The thermal radio continuum fluxes of the compact H II regions are proportional to the CO fluxes of molecular clumps. This is consistent with the previous results that the total mass of stars in an H II region is proportional to the mass of the associated molecular clump. According to our result, there are three non-thermal continuum sources in W51: G49.4-0.4 in W51A, a weak source close to G49.2-0.3 in W51B, and the shell source W51C. The non-thermal flux of G49.5-0.4 at 11-cm is $\~28 Jy$, which is $\~25\%$ of its total 11-cm flux. The radio continuum spectrum between 0.15 and 300 GHz also suggests an excess emission over thermal free-free emission. We show that the excess emission can be described as a non-thermal emission with a spectral index ${\alpha}{\simeq}-1.0 (S_v{\propto}V^a)$ attenuated by thermal free-free absorptions at low-frequencies. The non-thermal source close to G49.2-0.3 is weak $(\~9 Jy)$. The nature of the source is not known and the reality of the non-thermal emission needs to be confirmed. The non~thermal shell source W51C has a 11-cm flux of $\~130Jy$ and a spectral index ${\alpha}{\simeq}-0.26$.

  • PDF

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Infrared Spectral Signatures of Dust by Ground-based FT-IR and Space-borne AIRS (지상 및 위성 고분해 적외스펙트럼 센서에서 관측된 황사 특성)

  • Lee, Byung-Il;Sohn, Eun-Ha;Ou, Mi-Lim;Kim, Yoon-Jae
    • Atmosphere
    • /
    • v.19 no.4
    • /
    • pp.319-329
    • /
    • 2009
  • The intensive dust observation experiment has been performed at Korea Global Atmosphere Watch Center (KGAW) in Anmyeon, Korea during each spring season from 2007 to 2009. Downward and upward hyper-spectral spectrums over the dust condition were measured to understand the hyper-spectral properties of Asian dust using both ground-based Fourier Transform Infrared Spectroscopy (FT-IR) and space-borne AIRS/Aqua. To understand the impact of the Asian dust, a Line-by-Line radiative transfer model runs to calculate the high resolution infrared spectrum over the wave number range of $500-500cm^{-1}$. Furthermore, the radiosonde, a $PM_{10}$ Sampler, a Micro Pulse Lidar (MPL), and an Aerodynamic Particle Sizer (APS) are used to understand the vertical profile of temperature and humidity and the properties of Asian dust like concentration, altitude of dust layer, and size distribution. In this study, we found the Asian dust distributed from surface up to 3-4 km and volume concentration is increased at the size range between 2 and $8{\mu}m$ The observed dust spectrums are larger than the calculated clear sky spectrums by 15~60K for downward and lower by around 2~6K for upward in the wave number range of $800-1200cm^{-1}$. For the characteristics of the spectrum during the Asian dust, the downward spectrum is revealed a positive slope for $800-1000cm^{-1}$ region and negative slope over $1100-1200cm^{-1}$ region. In the upward spectrum, slopes are opposed to the downward one. It is inferred that the difference between measured and calculated spectrum is mostly due to the contribution of emission and/or absorption of the dust particles by the aerosol amount, size distribution, altitude, and composition.

Photoluminescence properties of $SrAl_{12}O_{19}:Mn^{4+}$ red phosphor depending on Mn concentration and fluxes ($SrAl_{12}O_{19}:Mn^{4+}$ 적색 형광체의 플럭스와 Mn 농도에 따른 영향 및 발광특성)

  • Park, W.J.;Jung, M.K.;Moon, J.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.156-159
    • /
    • 2007
  • The red emission properties of $Mn^{4+}$ doped $SrAl_{12}O_{19}$ prepared by the solid-state reaction was investigated, in order to verify its potential to act as the red emitting phosphor of white LEDs. The emission spectrum exhibits a narrow band between $600{\sim}700 nm $ with four sharp peaks occurring at about 643, 656, 666, 671 nm due to the $^2E\to^4A_2$ transition of $Mn^{4+}$. The excitation spectrum exhibits a broad band between $200{\sim}500 nm$ with three peaks occurring at about 338, 398 and 468 nm, respectively. Moreover, the relative emission intensity of $SrAl_{12}O_{19}:Mn^{4+}$ with or without $CaF_2$ and MgO fluxes measured at excitation source 390 nm. The relative emission intensity of $SrAl_{12}O_{19}:Mn^{4+}$ containing 0.67mol% MgO was approximately 30% higher than that of the base composition sample. Strontium hexa-aluminate measured at room temperature as a function of the substituted Mg concentration. MgO was added to replace part of the $Al_2O_3$. Also, the relative emission intensity of $SrAl_{12}O_{19}:Mn^{4+}$ containing 0.67 mol% MgO and 0.67 mol% $CaF_2$ was approximately about 48% higher than that of the base composition $SrAl_{12}O_{19}:Mn^{4+}$.

Effects of Eu3+ and Tb3+ Activator Ions on the Properties of SrSnO3 Phosphors (Eu3+와 Tb3+ 활성제 이온이 SrSnO3 형광체의 특성에 미치는 영향)

  • Kim, Jung Dae;Cho, Shinho
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.469-473
    • /
    • 2014
  • $SrSnO_3$ phosphor powders were synthesized with two different contents of activator ions $Eu^{3+}$ and $Tb^{3+}$ using the solid-state reaction method. The structural, morphological, and optical properties of the phosphors were investigated using X-ray diffractometry, field-emission scanning electron microscopy, and fluorescence spectrophotometry, respectively. All the phosphors showed a cubic structure, irrespective of the type and the content ratio of activator ions. For $Eu^{3+}$-doped $SrSnO_3$ phosphors, the intensity of the 620 nm red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ was stronger than that of the 595 nm orange emission signal due to the $^5D_0{\rightarrow}^7F_1$ transition in the range 0.01-0.05 mol of $Eu^{3+}$, but the ratio of the intensity was reversed in the range 0.10-0.20 mol of $Eu^{3+}$. The variation in the emission intensity indicates that the site symmetry of the $Eu^{3+}$ ions around the host crystal was changed from non-inversion symmetry to inversion. For the $Tb^{3+}$-doped $SrSnO_3$ phosphors under excitation at 281 nm, one strong green emission band at 550 nm and several weak bands were observed. These results suggest that the optimum red and green emission signals can be realized when the activator ion content for $Eu^{3+}$- or $Tb^{3+}$-doped $SrSnO_3$ phosphors is 0.20 mol and 0.15 mol, respectively.

Synthesis and Photoluminescence Properties of Dy3+- and Eu3+-codoped CaMoO4 Phosphors (Dy3+와 Eu3+ 이온이 동시 도핑된 CaMoO4 형광체의 합성과 발광 특성)

  • Kim, Junhan;Cho, Shinho
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.3
    • /
    • pp.82-86
    • /
    • 2015
  • $Dy^{3+}$- and $Eu^{3+}$-codoped $CaMoO_4$ Phosphors were synthesized by using the solid-state reaction method. The crystal structure, morphology, and optical properties of the resulting phosphor particles were investigated by using the X-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectroscopy. XRD patterns exhibited that all the synthesized phosphors showed a tetragonal system with a main (112) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. As the content of $Eu^{3+}$ ions increased, the grains showed a tendency to agglomerate. The excitation spectra of the synthesized powders were composed of one strong broad band centered at 305 nm in the range of 220 - 350 nm and several weak peaks in the range of 350 - 500 nm resulting from the 4f transitions of activator ions. Upon ultraviolet excitation at 305 nm, the yellow emission line due to the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$ ions and the main red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ ions were observed. With the increase of the content of $Eu^{3+}$, the intensity of the yellow emission band gradually decreased while that of the red emission increased. These results indicated that the emission intensities of yellow and red emissions could be modulated by changing the content of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the host crystal.

Spectroscopic Evidence of Jet-Cooled p-Chloro-α-Methylbenzyl Radical in Corona Excitation

  • Huh, Chang-Soon;Yoon, Young-Wook;Lee, Sang-Kuk
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2943-2948
    • /
    • 2012
  • We report the first spectroscopic evidence of the jet-cooled p-chloro-${\alpha}$-methylbenzyl radical. The visible vibronic emission spectrum was recorded from the corona discharge of precursor p-chloro-ethylbenzene seeded in a large amount of inert carrier gas helium using a pinhole-type glass nozzle coupled with a technique of corona excited supersonic expansion. From the comparison with the vibronic spectrum of the p-chlorobenzyl radical, we identified the evidence of formation of the jet-cooled p-chloro-${\alpha}$-methylbenzyl radical in the corona discharge of precursor p-chloro-ethylbenzene.