Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.9.469

Effects of Eu3+ and Tb3+ Activator Ions on the Properties of SrSnO3 Phosphors  

Kim, Jung Dae (Center for Green Fusion Technology and Department of Materials Science and Engineering, Silla University)
Cho, Shinho (Center for Green Fusion Technology and Department of Materials Science and Engineering, Silla University)
Publication Information
Korean Journal of Materials Research / v.24, no.9, 2014 , pp. 469-473 More about this Journal
Abstract
$SrSnO_3$ phosphor powders were synthesized with two different contents of activator ions $Eu^{3+}$ and $Tb^{3+}$ using the solid-state reaction method. The structural, morphological, and optical properties of the phosphors were investigated using X-ray diffractometry, field-emission scanning electron microscopy, and fluorescence spectrophotometry, respectively. All the phosphors showed a cubic structure, irrespective of the type and the content ratio of activator ions. For $Eu^{3+}$-doped $SrSnO_3$ phosphors, the intensity of the 620 nm red emission spectrum resulting from the $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$ was stronger than that of the 595 nm orange emission signal due to the $^5D_0{\rightarrow}^7F_1$ transition in the range 0.01-0.05 mol of $Eu^{3+}$, but the ratio of the intensity was reversed in the range 0.10-0.20 mol of $Eu^{3+}$. The variation in the emission intensity indicates that the site symmetry of the $Eu^{3+}$ ions around the host crystal was changed from non-inversion symmetry to inversion. For the $Tb^{3+}$-doped $SrSnO_3$ phosphors under excitation at 281 nm, one strong green emission band at 550 nm and several weak bands were observed. These results suggest that the optimum red and green emission signals can be realized when the activator ion content for $Eu^{3+}$- or $Tb^{3+}$-doped $SrSnO_3$ phosphors is 0.20 mol and 0.15 mol, respectively.
Keywords
phosphor; solid-state reaction; photoluminescence;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 W. Di, X. Zhao, S. Lu, X. Wang and H. Zhao, Solid State Chem., 180, 2478 (2007).   DOI   ScienceOn
2 S. Cho and S-W. Cho, Kor. J. Mater. Res., 22, 145 (2012) (in Korean).   DOI
3 M. J. Oh, H. J. Kim, H. Park and S. H. Kim, J. Korean Phys. Soc., 63, 1427 (2013).   DOI
4 B. S. Tsai, Y. H. Chang and Y. C. Chen, Electrochem. Solid St., 8, H55 (2005).   DOI
5 S-W. Cho, Kor. J. Mater. Res., 21, 611 (2011) (in Korean).   DOI
6 S. J. Lee and S. Cho, J. Korean Phys. Soc., 64, 135 (2014).   DOI
7 X. Li, Z. Yang, L. Guan, Q. Guo, S. Huai and P. Li, J. Rare Earth., 25, 706 (2007).   DOI   ScienceOn
8 C. Falcony, M. Garcia, A. Ortiz and J. C. Alonso, J. Appl. Phys., 72, 1525 (1992).   DOI
9 L. Wang, L. Shi, N. Liao, H. Jia, P. Du, Z. Xi, L. Wang and D. Jin, Mater. Chem. Phys., 119, 490 (2010).   DOI   ScienceOn
10 G. Z. Li, M. Yu, Z. L. Wang, J. Lin, R. S. Wang and J. Fang, J. Nanosci. Nanotechno. 6, 1416 (2006).   DOI
11 M. A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat and O. Tillement, J. Solid State Chem. 178, 989 (2005).   DOI   ScienceOn
12 J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008).   DOI   ScienceOn
13 M. Nazarov and D. Y. Noh, J. Rare Earth., 28, 1 (2010).
14 S. Cho and J. K. Woo, J. Korean Phys. Soc., 63, 1045 (2013).   DOI
15 L. Chen, Y. Jiang, G. Yang, G. Zhang, X. Xin and D. Kong, J. Rare Earth., 27, 312 (2009).   DOI
16 H. G. Kim, J. Korean Phys. Soc., 63, 1194 (2013).   DOI
17 F. C. Palilla and A. K. Levine, Appl. Opt., 5, 1467 (1966).   DOI   ScienceOn