• Title/Summary/Keyword: Emission Regulation

Search Result 401, Processing Time 0.024 seconds

Effects of Imperfect Sinusoidal Input Currents on the Performance of a Boost PFC Pre-Regulator

  • Cheung, Martin K.H.;Chow, Martin H.L.;Lai, Y.M.;Loo, K.H.
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.689-698
    • /
    • 2012
  • This paper investigates the effects of applying different input current waveshapes on the performance of a continuous-conduction-mode (CCM) power-factor-correction (PFC) boost pre-regulator. It is found that the output voltage ripple of the pre-regulator can be reduced if the input current is modified to include controlled amount of higher order harmonics. This finding allows us to balance the performance of output regulation and the harmonic current emission when coming to the design of the pre-regulator. An experimental PFC boost pre-regulator prototype is constructed to verify the analysis and show the benefit of the pre-regulator operating with input current containing higher order harmonics.

A Study on the Priority Analysis of Government Support Policies for SOx Emission of Ships

  • Yang, Han-Na;Lee, Gwang-Un;Shin, Chang-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.2
    • /
    • pp.86-92
    • /
    • 2019
  • IMO has enacted a convention that air pollution due to emissions of ships and sulfur oxides emissions should be significantly reduced by 2020. Based on the current support policies, this work intended to draw up the government support plans required by the shipping companies. Analytic Hierarchy Process analysis was done with factors derived from brainstorming and literature studies. The analysis results showed that the cost factor was generally the most important criterion and the Financial Aid was relatively more important within this cost factor. The policy implications for the regulation of sulfur oxides emissions was provided.

The Long-Term Variations of Water Quality in Masan Bay, South Sea of Korea (남해 마산만 수질의 장기 변동 특성)

  • Kwon, Jung-No;Lim, Jae-Hyun;Shim, Jeonghee;Lee, Jangho;Choi, Tae-Jun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.212-223
    • /
    • 2014
  • For the better understanding of long-term and seasonal variations of water quality in Masan Bay, South Sea of Korea, we analyzed the archive data monitored at three stations of the bay during the last 13 years (2000-2012). The average concentrations of the chemical oxygen demand (COD), the dissolved inorganic nitrogen (DIN) and the dissolved inorganic phosphorus (DIP) during the monitoring period are $2.70{\pm}0.09{\mu}/L$, $19.66{\pm}1.84{\mu}m$ and $1.39{\pm}0.13{\mu}m$ in surface water, respectively, and $2.22{\pm}0.07{\mu}/L$, $18.53{\pm}1.36{\mu}m$ and $1.47{\pm}0.12{\mu}m$ in bottom water, respectively. The trophic state of the surface water was the eutrophic level in Masan Bay during the four seasons. The DIN concentrations of both surface and bottom waters increased from August to November and showed the highest average in November. However, The DIN decreased from February to May and showed the lowest average in May. The concentrations of the DIP and the dissolved silicate (DSi) in bottom waters had the highest averages in August because of the high water temperature and oxygen deficient condition. The results of correlation analysis and factor analysis showed that the main factors of surface waters were inflow of nutrients from terrestrial areas and internal production, and the main factors of bottom waters were the variations of the dissolved oxygen (DO), the DIP, and the DSi. The DIN and DIP average concentrations (2007~2012) had decreased in range of 68.1%~76.0% and 66.2~76.6%, respectively from 2007 in which the "Regulation of Total Emission" was established in Masan Bay. Therefore, it could have had positive effects on water quality improvement to take the "Regulation of Total Emission" and other actions such as reducing water pollutions in Masan Bay from 2007.

Conceptual Design of a Portal System for International Shipping's Greenhouse Gas Monitoring, Reporting, and Verification (MRV 규제 대응을 위한 국제해운 에너지 효율 포탈 시스템 개념 설계)

  • Kang, Nam-seon;Lee, Beom-seok;Kim, Sang-yong;Lee, Jung-jin;Yoon, Hyeon-kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.108-117
    • /
    • 2016
  • In this paper, a portal system compatible with MRV regulation was designed to monitoring, reporting and verifying $CO_2$ emission and fuel consumption data from an international ship. A portal system supports monitoring and reporting task of international shipping companies and calculates national greenhouse gas inventory. EU MRV law, MRV discussions of IMO, responses of international shipping companies to ship energy efficiency and greenhouse gas regulation, and greenhouse gas statistics on international shipping were analyzed to drive portal system requirements. For ship energy efficiency and $CO_2$ emitted monitoring, a data collection module was designed based on on-board equipment, energy efficiency measuring device and navigation report. Data transfer module with easy management and minimized usage to transfer ship data to shore was designed. A portal system was designed to convert the collected data into the standard reporting format, perform monitoring, statical analysis, verification and auto report generation, and support national greenhouse gas inventory.

Desirable pH of Slurry in the Desulfurization Absorber for a 200 MW Anthracite Power Plant (200 MW급 무연탄 발전용 탈황 흡수탑에서 적정 슬러리pH)

  • Choi, Hyun-Ho;Yoo, Hoseon
    • Plant Journal
    • /
    • v.16 no.1
    • /
    • pp.38-43
    • /
    • 2020
  • In this study, Seochon Thermal Power Plant No.1 for anthracite coal was tested to find the proper operation range of limestone slurry pH in the absorber tower which can be operated continuously in compliance with the Air Quality Preservation Act and Seocheon Thermal Power Division's internal regulation, sulfur dioxide average emission regulation. When operating the sulfur dioxide concentration [ppm] in the combustion gas flowing into the desulfurization absorption tower at 370, 400, 460 and 550 ppm while the main operating elements such as the flow rate of the combustion gas were fixed, the proper slurry pH Were 4.4, 4.5, 4.8 and 5.1, respectively. Therefore, it is recommended to operate with the correlation equation, RpH=0.004×Cin+2.93 derived using sulfur dioxide and the appropriate slurry pH.

An Integrated Multi-Product Inventory Model for a Two-Echelon Supply Chain under Cap-and-Trade Mechanism (배출권거래제 하에서 2단계 공급사슬에서 다품목의 통합재고모형)

  • Kim, Dae-Hong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.61-68
    • /
    • 2019
  • Currently many companies are interested in reduction of the carbon emissions associated with their supply chain activities such as transportation and operations. Operational decisions, such as modifications in order quantities could an effective way in reducing carbon emissions in the supply chain. Cap-and-trade regulation, sometimes called emissions trading, is a market-based tool to limit greenhouse gas emissions. Under cap-and-trade regulation, emission credits are allocated to the firms and the firms trades emissions under cap-and-trade schemes. In this paper, we propose a single-manufacturer single-buyer two-echelon supply chain problem under the cap-and-trade mechanism incorporating the carbon emissions caused by transportation and warehousing activities where a single manufacturer produces a family of items in order to deliver a family of items to a single buyer at a fixed interval of time for effective implementation of Just-In-Time (JIT) Purchasing. An integrated multi-product lot-splitting model of facilitating multiple shipments in small lots between buyer and manufacturer is developed in a JIT Purchasing environment. Also, an iterative heuristic algorithm is developed to derive the common order interval, the number of intervals for each product and the number of shipments between the buyer and the manufacturer during the common interval. A numerical example is given to illustrate the savings in reduction of total cost and carbon emissions by the inventory model incorporating cap-and-trade mechanism compared to the classical inventory model. The proposed inventory model could be useful for the practical solution of two-echelon supply chain inventory problem under cap-and-trade mechanism.

Corrosion Charateristics of PEO-treated Ti-6Al-4V Alloy in Solution Containing Si and Mg Ions

  • Park, Seon-Yeong;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.153-153
    • /
    • 2017
  • The application of the coating supports the mechanical characteristics of the implant, and various materials and coatings are currently being used in the implant in a way to accelerate adhesion. Especially, plasma electrolytic oxidation (PEO) coating has been proposed continually with good surface treatment of titanium alloys. Also, the PEO process can incorporate Ca and P ions on the titanium surface through variables varied factor. PEO process for bioactive surface has carried out in electrolytes containing Ca and P ions. Natural bone is composed of mineral elements such as Mg, Si, Zn, Sr, and Mn, etc. Especially, Mg and Si of these elements play role in bone formation and growth after clinical implantation of bio-implants. In this study, corrosion charateristics of PEO-treated Ti-6Al-4V alloy in solution containing Si and Mg ions has been investigated using several experimental techniques. The PEO-treated surfaces were identified by X-ray diffraction, using a diffractometer (XRD, Philips X' pert PRO, Netherlands) with Cu $K{\alpha}$ radiation. The morphology was observed by field-emission scanning electron microscopy (FE-SEM, Hitachi 4800, Japan) and energy-dispersive X-ray spectroscopy (EDX, Oxford ISIS 310, England). The potentiodynamic polarization and AC impedance tests for electrochemical degradations were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Optimization of 150kW Cogeneration Hybrid System (150kW급 열병합발전 하이브리드 시스템 최적화 연구)

  • Choi, Jae-Joon;Kim, Hyuk-Joo;Jung, Dae-Heon;Park, Hwa-Choon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.340-344
    • /
    • 2008
  • The importance of the more efficient cogeneration system is emphasized. Also the more clean energy is needed at recent energy system. The cogeneration system using Lean burn engine is more preferred to the system using Rich burn engine because of the electrical efficiency. Although the cogeneration system using Lean burn engine is economically preferred, because of the NOx emission level, the system using Rich burn engine with 3-way catalyst can only be used in Korea. The NOx regulation level is 50ppm at oxygen level 13%. The cogeneration hybrid system using Lean burn engine is up to be optimized because of the large amount of the extra-fuel at the after-burner system. The after-burner system at different concept was applied. The reduction time for the activation temperature of the DeNOx catalyst was achieved by making a hole between the combustor and boiler. Because of the lowered fuel consumption, the lowered temperature level was optimized by blocking the hole of the boiler The optimized cogeneration hybrid system consumes $76Nm^3/h$ LNG to produce 150kW electricity compared to before optimization $103Nm^3/h$ LNG. The system was accurately evaluated and the result is following ; 90% total efficiency, below 10 ppm NOx, 50ppm CO, 25ppm HC. The cogeneration hybrid system can meet the current NOx level and exhaust gas regulation. It can achieve the clean combustion gas and efficient cogeneration system.

  • PDF

A Study on the Effectiveness of Each Response Plan According to the Strengthening of the Regulation of GHG Emission from the Ship (선박 온실가스 배출규제 강화에 따른 대응방안별 실효성 연구)

  • Yeong-Soo Ryu;Myung-Hee Chang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.201-202
    • /
    • 2021
  • Regulations on greenhouse gases emitted from ships in international shipping are being strengthened, and the greenhouse gas reduction target established by the International Maritime Organization is acting as a great challenge for shipping companies in terms of technical and operational aspects. The International Maritime Organization aims to reduce carbon intensity by 30% by 2030, 70% by 2050, and by 50% in terms of gross emissions compared to 2008. To realize this situation, the IMO adopted some short-term and mid-to-long-term measures and adopted technical measures such as the application of EEXI, an energy efficiency index, to existing ships from 2023, and the early application of EEDI phase 3 for some tpe of ships. In addition, reduction measures were introduced to reduce greenhouse gas in the operational aspect.

  • PDF