Koeun Lee;Kyung Won Kim;Yousun Ko;Ho Young Park;Eun Jin Chae;Jeong Hyun Lee;Jin-Sook Ryu;Hye Won Chung
Korean Journal of Radiology
/
v.22
no.9
/
pp.1497-1513
/
2021
The diagnostic and treatment methods of multiple myeloma (MM) have been rapidly evolving owing to advances in imaging techniques and new therapeutic agents. Imaging has begun to play an important role in the management of MM, and international guidelines are frequently updated. Since the publication of 2015 International Myeloma Working Group (IMWG) criteria for the diagnosis of MM, whole-body magnetic resonance imaging (MRI) or low-dose whole-body computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography/CT have entered the mainstream as diagnostic and treatment response assessment tools. The 2019 IMWG guidelines also provide imaging recommendations for various clinical settings. Accordingly, radiologists have become a key component of MM management. In this review, we provide an overview of updates in the MM field with an emphasis on imaging modalities.
Kyu Bom Kim;Yeonkyeong Kim;Kyuseok Kim;Su Hwan Lee
Nuclear Engineering and Technology
/
v.56
no.10
/
pp.4127-4133
/
2024
Noise reduction in low-dose positron emission tomography (PET) is a well-researched topic aimed at reducing patient radiation doses and improving diagnosis. Software-based noise reduction mainly improves the contrast between regions by reducing the variation of the acquired image. However, it should be performed under appropriate parameters to reduce discrimination. We propose a method that derives optimal noise-reduction parameters using the multi-scale structural similarity index measure and visual information fidelity, which are metrics for image quality assessment. Simulation and experimental studies demonstrated the viability of the proposed algorithm. The contrast-to-noise ratio value of the denoised reconstruction slice, which was used as the optimal parameter, increased approximately three times compared to that of the low-dose slice while preserving the resolution. The results indicate that the proposed method successfully predicted the parameters according to the noise-reduction algorithm and PET system conditions in the sinogram domain. The proposed algorithm should help prevent misdiagnosis and provide standardized medical images for clinical application by performing appropriate noise reduction.
This paper discusses the application of evolutionary multi-objective optimization algorithms namely Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and Modified NSGA-II (MNSGA-II) for solving the Combined Economic Emission Dispatch (CEED) problem with valve-point loading. The valve-point loading introduce ripples in the input-output characteristics of generating units and make the CEED problem as a non-smooth optimization problem. IEEE 57-bus and IEEE 118-bus systems are taken to validate its effectiveness of NSGA-II and MNSGA-II. To compare the Pareto-front obtained using NSGA-II and MNSGA-II, reference Pareto-front is generated using multiple runs of Real Coded Genetic Algorithm (RCGA) with weighted sum of objectives. Furthermore, three different performance metrics such as convergence, diversity and Inverted Generational Distance (IGD) are calculated for evaluating the closeness of obtained Pareto-fronts. Numerical results reveal that MNSGA-II algorithm performs better than NSGA-II algorithm to solve the CEED problem effectively.
Proceedings of the Korean Environmental Health Society Conference
/
2003.06a
/
pp.89-93
/
2003
Daily average concentrations of fine particulates have been measured simultaneously in Seoul and Asan area by using PM minivolTM portable air sampler(Air Metrics, U.S.A) from September 2001 to August 2002. The sampler were analyzed by ICP-OES(inductively coupled plasma optical emission spectrometry, optima 3000DV, Perkin Elmor) to determine the fine particulate concentrations of metallic elements(As, Mn. Ni, Fe, Cr, Cu, Cd, Pb, Zn, Si). The concentration of PM$\sub$2.5/ showed a high trend in the Seoul area. Zn showed a similar distribution ratio for the fine particle in both Seoul and Asan. Mn and Fe, Cr, Cd are highly correlated in the Seoul and Asan area(P<0.05).
Lee, Ji Hyun;Lee, Dong Woog;Kwak, No-Sang;Lee, Jung Hyun;Shim, Jae-Goo
KEPCO Journal on Electric Power and Energy
/
v.2
no.1
/
pp.109-113
/
2016
Techno-economic evaluation of Non-Capture $CO_2$ Utilization (NCCU) technology for the production of high-value-added products using greenhouse gas ($CO_2$) was performed. The general scheme of NCCU process is composed of $CO_2$ carbonation and brine electrolysis process. Through a carbonation reaction with sodium hydroxide that is generated from brine electrolysis and $CO_2$ of the flue gas, it is possible to get high-value-added products such as sodium bicarbonate, sodium hydroxide, hydrogen & chloride and also to reduce the $CO_2$ emission simultaneously. For the techno-economic study on NCCU technology, continuous operation of bench-scale facility which could treat $2kgCO_2/day$ was performed. and based on the key performance data evaluated, the economic evaluation analysis targeted on the commercial chemical plant, which could treat 6 tons $CO_2$ per day, was performed using the net present value (NPV) metrics. The results showed that the net profit obtained during the whole plant operation was about 7,890 mKRW (million Korean Won) on NPV metrics and annual $CO_2$ reduction was estimated as about $2,000tCO_2$. Also it was found that the energy consumption of brine electrolysis is one of the key factors which affect the plant operation cost (ex. electricity consumption) and the net profit of the plant. Based on these results, it could be deduced that NCCU technology of this study could be one of the cost-effective $CO_2$ utilization technology options.
Amyloid brain positron emission tomography (PET) images are visually and subjectively analyzed by the physician with a lot of time and effort to determine the ${\beta}$-Amyloid ($A{\beta}$) deposition. We designed a convolutional neural network (CNN) model that predicts the $A{\beta}$-positive and $A{\beta}$-negative status. We performed 18F-florbetaben (FBB) brain PET on controls and patients (n=176) with mild cognitive impairment and Alzheimer's Disease (AD). We classified brain PET images visually as per the on the brain amyloid plaque load score. We designed the visual geometry group (VGG16) model for the visual assessment of slice-based samples. To evaluate only the gray matter and not the white matter, gray matter masking (GMM) was applied to the slice-based standard samples. All the performance metrics were higher with GMM than without GMM (accuracy 92.39 vs. 89.60, sensitivity 87.93 vs. 85.76, and specificity 98.94 vs. 95.32). For the patient-based standard, all the performance metrics were almost the same (accuracy 89.78 vs. 89.21), lower (sensitivity 93.97 vs. 99.14), and higher (specificity 81.67 vs. 70.00). The area under curve with the VGG16 model that observed the gray matter region only was slightly higher than the model that observed the whole brain for both slice-based and patient-based decision processes. Amyloid brain PET images can be appropriately analyzed using the CNN model for predicting the $A{\beta}$-positive and $A{\beta}$-negative status.
The environmental, social, and governance (ESG) score is gaining recognition as important nonfinancial investment criteria. With climate change emerging as a global issue, energy companies must pay attention to the ESG impact on corporate performance. In this study, the ESG impact on the performance of energy companies was analyzed based on 23 companies selected from the S&P 500. The panel corrected standard error methodology was used. The Refinitiv ESG score was the independent variable, and financial performance metrics, such as Tobin's Q, return on assets, and return on equity, were the dependent variables. It was found that the ESG score is positively associated with long-term corporate value but not with short-term profitability in the electricity utility industry. Among the subcategories of ESG, the environmental and social scores also showed positive correlations with long-term corporate value. A direct incentive policy is recommended that can offset expenses for ESG activities to reduce carbon emission in the energy sector.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.14
no.1
/
pp.14-21
/
2021
Green networking has become a issue to reduce energy wastes and CO2 emission by adding energy managing mechanism to wired data networks. Energy consumption of the overall wired data networks is driven by access networks, expect for end devices. However, on a global scale, it is more difficult to manage centrally energy, measure and model the real energy use and energy savings potential of the access networks. This paper presented the multiple linear regression model to predict energy consumption of wired access networks using supervised learning of machine learning with data collected by existing investigated materials, actual measured values and results of many models. In addition, this work optimized the performance of it by various experiments and predict energy consumption of wired access networks. The performance evaluation of the regression model was achieved by well-knowned evaluation metrics.
Rotsnarani Sethy;Soumya Ranjan Mahanta;Mrutyunjaya Panda
International Journal of Computer Science & Network Security
/
v.24
no.9
/
pp.30-40
/
2024
Building an accurate 3-D spatial road network model has become an active area of research now-a-days that profess to be a new paradigm in developing Smart roads and intelligent transportation system (ITS) which will help the public and private road impresario for better road mobility and eco-routing so that better road traffic, less carbon emission and road safety may be ensured. Dealing with such a large scale 3-D road network data poses challenges in getting accurate elevation information of a road network to better estimate the CO2 emission and accurate routing for the vehicles in Internet of Vehicle (IoV) scenario. Clustering and regression techniques are found suitable in discovering the missing elevation information in 3-D spatial road network dataset for some points in the road network which is envisaged of helping the public a better eco-routing experience. Further, recently Explainable Artificial Intelligence (xAI) draws attention of the researchers to better interprete, transparent and comprehensible, thus enabling to design efficient choice based models choices depending upon users requirements. The 3-D road network dataset, comprising of spatial attributes (longitude, latitude, altitude) of North Jutland, Denmark, collected from publicly available UCI repositories is preprocessed through feature engineering and scaling to ensure optimal accuracy for clustering and regression tasks. K-Means clustering and regression using Support Vector Machine (SVM) with radial basis function (RBF) kernel are employed for 3-D road network analysis. Silhouette scores and number of clusters are chosen for measuring cluster quality whereas error metric such as MAE ( Mean Absolute Error) and RMSE (Root Mean Square Error) are considered for evaluating the regression method. To have better interpretability of the Clustering and regression models, SHAP (Shapley Additive Explanations), a powerful xAI technique is employed in this research. From extensive experiments , it is observed that SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions SHAP analysis validated the importance of latitude and altitude in predicting longitude, particularly in the four-cluster setup, providing critical insights into model behavior and feature contributions with an accuracy of 97.22% and strong performance metrics across all classes having MAE of 0.0346, and MSE of 0.0018. On the other hand, the ten-cluster setup, while faster in SHAP analysis, presented challenges in interpretability due to increased clustering complexity. Hence, K-Means clustering with K=4 and SVM hybrid models demonstrated superior performance and interpretability, highlighting the importance of careful cluster selection to balance model complexity and predictive accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.