• Title/Summary/Keyword: Emerging contaminants

Search Result 26, Processing Time 0.02 seconds

A Study on the Color Reproduction for Offset Printing using Ecological Ink in the Domestic Printing Environment (국내 인쇄 환경에서 친환경 잉크를 이용한 오프셋 인쇄의 색재현에 관한 연구)

  • Moon, Sung-Hwan;Kim, Sung-Su;Koo, Chul-Whoi;Yoo, Keun-Ryong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.69-85
    • /
    • 2010
  • Currently, environmental contaminants that can cause Aromatic types of hydrocarbons, less than 1% made of Aromatic Free kind of used products, soybean oil products with linseed oil with the products, rice products using a wide range of environmentally ecological ink since 2000 is released quickly. All materials used in printed material, if the green is the best way to print the composite materials in industrial applications, because each process on the print quality and productivity, there can be many differences in this experiment because it accounts for a large proportion in the print general ink in the ink section and the International color standards(ISO2846-1:2006) certified ecological ink were compared. Therefore, in this paper has the ink released from the same company, each common general ink and ecological ink in the same condition which results were focused on whether the emerging international color standard(ISO 2846-1:2006) recognized for environmentally ecological ink printed color reproduction of the actual offset(color reproduction) how conformity to ISO 12647-2 standard color on the basis of the offset would check Color Reproduction. Based on the results of the experiments of this study, given the ecological ink coated paper, uncoated paper both color difference and the gamut of the ISO 12647-2 standard is suitable for ecological ink, the ink's color gamut reproduction, even more than existing international standards, there is no confirmed that the correct color reproduction possible. Using environmentally ecological ink industries is expected to respond to environmental policy.

A Research to Decrease Airborne Microoganism the Train (전동차내 부유 미생물 저감방안에 관한 연구)

  • Choi, Sung-Ho;Choi, Soon-Gi;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2895-2901
    • /
    • 2011
  • SeoulMetro(line number 1 to 4) for the first half of the year. Therefore air quality in the subway is very important. It is passengers, such as sneezing and respiratory vital activities, Suspended due to skin keratin microbial action, and Microbial contaminants such as viruses. Hypersensitivity disorders, an atopic dermatitis, infectious diseases, allergic diseases, and can cause respiratory diseases. Ministry of Environment and National Institute of Environmental Research is managed so the life bacteria. It is emerging as the occupational health problems. Introduction of an appropriate ventilation system for cooling and dehumidification is needed. In line number 2, commuting and normal trains are measured in-room floating microbes. Suspended bacteria and fungi suspended in 2011 for 85 ~ 385$cfu/m^3$, 67 ~ 98$cfu/m^3$ is lower than baseline. Suspended to prevent microbial contamination and air conditioning equipment performance is a substantial improvement. Suspended micro-organisms and the impact on passenger room ventilation is increased. Electric car how to improve air quality substantially investigated.

  • PDF

Analyses of the current market trend and research status of indoor air quality control to develop an electrostatic force-based dust control technique (정전기적 힘을 이용한 실내공기 미세부유먼지 제거 요소기술의 개발을 위한 기술별 시장현황 및 연구 동향 분석)

  • Yoon, Young H.;Joo, Jin-Chul;Ahn, Ho-Sang;Nam, Sook-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6610-6617
    • /
    • 2013
  • This study examined the current and future Indoor Air Quality (IAQ) control device markets and analyzed the recent studies on indoor air pollutantr emoval to develop a new technology for fine dust control. Currently, the mechanical filter technique occupies the bulk of the IAQ control market but the electronic technique is emerging as an alternative to control fine dust efficiently. Among the gaseous VOCs and fine dust particles contaminating the indoor air quality, fine dust particles are more problematic because they threaten human health by penetrating deep into the body and producing secondary contaminants by chemical reaction with VOCs. The electronic IAQ control device using dielectrophoretic and electrostatic forces is a good option for public spaces where many people pass, and at the same time, it needs to consider temperature, humidity, and the particle properties of specific areas to highlight the control efficiency. Electronic-related technology is expected to be used widely in many public/private spaces wherever a dust-free environment is required.

Decomposition of Sulfamethoxazole by Catalytic Wet Peroxide Oxidation (촉매습식과산화(CWPO)를 이용한 설파메톡사졸의 분해)

  • Kim, Dul Sun;Lee, Dong-Keun;Kim, Jin Sol
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.293-300
    • /
    • 2018
  • Sulfamethoxazole (SMX) is sulfaamide-based synthetic antibiotics, which are widely prescribed pharmaceutical compound to treat bacterial infections in both human and animals. Most of them are not completely decomposed as refractory substances. The environmental impact of pharmaceuticals as emerging contaminants has generated severe concerns. In this study, catalytic wet peroxide oxidation (CWPO) of SMX was carried out with $Cu/Al_2O_3$ catalyst and investigated the optimum reaction conditions of temperature, dosage of catalyst and concentration of $H_2O_2$ to completely decompose the SMX. It was observed that SMX was completely decomposed within 20 min using 0.79 mM $H_2O_2$ and 6 g $Cu/Al_2O_3$ catalyst at 1 atm and $40^{\circ}C$, but SMX was not fully mineralized and converted to intermediates as hydroylated-SMX, sulfanilic acid, 4-aminobenzenesulfinic acid and nitrobenzene. After that these are completely mineralized through organic acid. We proposed the decomposition reaction path ways of SMX by analyzing the behavior of these intermediates. To investigate the durability of heterogeneous catalyst, decomposition of SMX was observed by continuously recycling catalysts. When the heterogeneous catalyst of 10 wt% $Cu/Al_2O_3$ was continuously reused 5 times, decomposition of SMX was a little lowered, but the activity of catalyst was overall very stable.

Determination of acidic pharmaceuticals in aquatic environmental samples by LC/ESI-MS/MS (LC/ESI-MS/MS를 이용한 수질 환경 시료 중 산성의약물질 분석방법 비교)

  • Sim, Young-Eun;Cho, Hyun-Woo;Myung, Seung-Woon
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.191-200
    • /
    • 2008
  • Pharmaceuticals and personal care products (PPCPs) are emerging contaminants in aquatic environmental samples. Therefore, it required rapidly and certainly analytical method for pharmaceuticals which are existed in environment. In this study, Liquid chromatography/tandem mass spectrometry (LC-MS/MS) with electrospray ionization (ESI) was used to measure the concentrations of 7 pharmaceuticals (quinoxaline-2-carboxylic acid, acetylsalicylic acid, diclofenac-Na, naproxen, ibuprofen, mefenamic acid, talniflumate) from environmental water or aquatic samples simultaneously. Effective sample clean-up by solid-phase extraction (SPE) prior to LC-MS/MS analysis is necessary. For further purification, Mixed Cation eXchange (MCX) and Hydrophilic-Lipophilic Balance (HLB) solid-phase extraction (SPE) cartridges were used to eliminate the remaining interferences. LODs (Limits of Detection) and MDLs (Method Detection Limits) for the spiked sample in fresh water were in the range of 0.05~1.50 pg/mL and 0.17~4.90 pg/mL, respectively. The absolute recovery in the concentration of 1.0 ng/mL were between 81.9 and 116.3%. The acidic pharmaceuticals were detected in concentrations of 0.018~16.925 ng/mL in aquatic environmental samples.

Improvement of the Efficacy Test Methods for Hand Sanitizers (Gel, Liquid, and Wipes): Emerging Trends from in vivo/ex vivo Test Strategies for Application in the Hand Microbiome (손소독제(겔형, 액제형, 와이프형)의 효능 평가법 개선: 평가 전략 연구 사례 및 손 균총 정보 활용 등 최근 동향)

  • Yun O;Ji Seop Son;Han Sol Park;Young Hoon Lee;Jin Song Shin;Da som Park;Eun NamGung;Tae Jin Cho
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Skin sanitizers are effective in killing or removing pathogenic microbial contaminants from the skin of food handlers, and the progressive growth of consumer interest in personal hygiene tends to drive product diversification. This review covers the advances in the application of efficacy tests for hand sanitizers to suggest future perspectives to establish an assessment system that is optimized to each product type (gel, liquid, and wipes). Previous research on the in vivo simulative test of actual consumer use has adopted diverse experimental conditions regardless of the product type. This highlights the importance of establishing optimal test protocols specialized for the compositional characteristics of sanitizers through the comparative analysis of test methods. Although the operational conditions of the mechanical actions associated with wiping can affect the efficacy of the removal and/or the inactivation of target microorganisms from the skin's surface, currently there is a lack of standardized use patterns for the exposure of hand sanitizing wipes to skin. Thus, major determinants affecting the results from each step of the overall assessment procedures [pre-treatment - exposure of sanitizers - microbial recovery] should be identified to modify current protocols and develop novel test methods. The ex vivo test, designed to overcome the limited reproducibility of in vivo human trials, is also expected to replicate the environment for the contact of sanitizers targeting skin microorganisms. Recent progress in the area of skin microbiome research revealed distinct microbial characteristics and distribution patterns after the application of sanitizers on hands to establish the test methods with the perspectives on the antimicrobial effects at the community level. The future perspectives presented in this study on the improvement of efficacy test methods for hand sanitizers can also contribute to public health and food safety through the commercialization of effective sanitizer products.