• Title/Summary/Keyword: Emergent macrophytes

Search Result 21, Processing Time 0.023 seconds

A Comparative Study on Litter Decomposition of Emergent Macrophytes in the Littoral Zone of Reservoir

  • Jo, Kang-Hyun;Gong, Hak-Yang
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.333-339
    • /
    • 1998
  • Litter decomposition is a key process in energy flow and nutrient cycling in the freshwater littoral zone, and is regulated by physicochemical properties of litters. Using a litterbag method, we compared the decomposition rates of 16 different litter types from 10 plant species of the emergent macrophytes for one year in the littoral zone of the Paltangho Reservoir, Korea. The regression analysis fitted to the various decomposition models showed that mass loss of the litters with time best fitted an asymptotic function. The litters of the emergent macrophytes were composed of two compartments, labile and refractory. The macrophytic litters showed a great variety in decomposition dynamics depending on sources of litters. The labile compartment of the initial litter mass was in a wide range between 18% and 99%, and their decomposition rates varied from 0.0037 to 0.0131 day-1. The decomposition processes of the emergent macrophytes were determined by the relative amounts of the labile and refractory compartments and by the decomposition rate of the habile one in the littoral zone.

  • PDF

Comparisons of Nitrogen and Phosphorus Removal Capacity of Four Macrophytes

  • Lee, Jeom-Sook;Ihm, Byung-Sun;Kim, Jong-Wook;Lee, Seung-Ho
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.163-167
    • /
    • 2000
  • To evaluate the water purification capacity of 4 emergent macrophytes in 4 tributaries of Mankyung River, nitrate reductase activity (NRA) and nutrient removal capacity were determined. Higher NRA occurred in emergent macrophytes such as Persicaria thunbergii and Oenanthe iavanica with 7.8 and 5.4 ${\mu}$moi NO$_2$ g$^{-1}$d.wt. h$^{-1}$. respectively. The nitrogen removal capacity of emergent macrophytes displaying higher NRA fell within the range of 0.85 to 1.95 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Persicaria thunbergii > Oenanthe iavanica > Zizania latifolia. The phosphorus removal capacity was within the range of 0.07 to 0.12 mg g$^{-1}$d.wt. day$^{-1}$ and was higher in the order Phragmites communis > Oenanthe iavanica > Persicaria thunbergii > Zizania latifolia. In all the domestic, industrial and agricultural wastewaters, Phragmites communis showed the highest nitrogen and phosphorus removal capacity; 1.36 and 0.0088 mg g$^{-1}$d.wt. day$^{-1}$ respectively. Among the 4 macrophytes. Phragmites communis was the most suitable species for water purification in 4 tributaries of Mankyung River.

  • PDF

Selection of Suitable Plants for Artificial Floating Islands - Comparisons of Vegetation Structure and Growth of Four Emergent Macrophytes (인공 식물섬에 적합한 식물의 선발 - 4종 정수식물의 식생구조와 생장의 비교)

  • Lee, Hyo Hye Mi;Kwon, Oh Byung;Suck, Jeong Hyun;Cho, Kang-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.57-66
    • /
    • 2001
  • The floating islands have been constructed for the water quality improvement and the biodiversity conservation in an disturbed aquatic ecosystem. We made floating islands consisted of a special float and substrates of coconut fibers implanted with four emergent macrophytes such as Phragmites australis, Zizania latifolia, Iris pseudoacorus, Typha angustifolia. Vegetation structure and plant growth were compared between on the floating islands and on ground in order to select suitable plants for the construction of floating islands. Emergent-macrophytic vegetation on the floating islands showed lower coverages and higher plant biodiversity due to natural introduction of various hydrophytes and hygrophytes. Shoot density was increased on floating islands except for Zizania latifolia. From the point of coverage and density of plants, Phragmites australis and Iris pseudoacorus were suitable for floating islands. Total biomass of emergent macrophytes was decreased on the floating islands. The belowground/aboveground biomass ratio of floating islands was higher than that of the ground. Out of planted macrophytes, Iris pseudoacorus with a high belowground/aboveground biomass ratio could be evaluated a suitable plant for the floating islands because a plenty of its root is profitable to adapt with the nutrient-limited environment of floating islands.

  • PDF

The role of macrophytes in wetland ecosystems

  • Rejmankova, Eliska
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.333-345
    • /
    • 2011
  • Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. This review is to briefly summarizes various macrophyte classifications, and covers numerous aspects of macrophytes' role in wetland ecosystems, namely in nutrient cycling. The most widely accepted macrophyte classification differentiates between freely floating macrophytes and those attached to the substrate, with the attached, or rooted macrophytes further divided into three categories: floating-leaved, submerged and emergent. Biogeochemical processes in the water column and sediments are to a large extent influenced by the type of macrophytes. Macrophytes vary in their biomass production, capability to recycle nutrients, and impacts on the rhizosphere by release of oxygen and organic carbon, as well as their capability to serve as a conduit for methane. With increasing eutrophication, the species diversity of wetland macrophytes generally declines, and the speciose communities are being replaced by monoculture-forming strong competitors. A similar situation often happens with invasive species. The roles of macrophytes and sediment microorganisms in wetland ecosystems are closely connected and should be studied simultaneously rather than in isolation.

Early Stage Decomposition of Emergent Macrophytes (대형 수생식물의 초기 분해에 관한 연구)

  • Shin, Jin-Ho;Choi, Sang-Kyu;Yeon, Myung-Hun;Kim, Jeong-Myung;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • v.29 no.6
    • /
    • pp.565-572
    • /
    • 2006
  • This study examined the decomposition of blades and culms of aquatic emergent plant species, Zizania latifolia, Phragmites communis and Typha angustata, which were the most frequent in Lake Paldang. The experiment was carried out from July to December, 2005 in fresh water of lake Paldang using litter bag method. The litter bags had 1.2 mm mesh size and were suspended at 1 m depth of water surface. Remaining mass of blades and culms of each species after 97 days was 21.2% and 22.6% of initial mass in Z. latifolia, 32.5% and 56.4% in P. communis and 44.7% and 38.1 % in T. angustata, respectively. The plant tissue having high N concentration and low C/N exhibited the faster decay rate than the others. However, the tissue of high content of lignin, cellulose, lignin:N, and cullulose:N showed a slow decomposition rate. Water temperature was the most effective environmental factor on the emergent macrophyte litter decomposition in aquatic ecosystems. According to the water temperature, DO, $NO_3^-$-N, and total phosphate concentration were changed in the linear way. The mass loss of plant tissue of emergent macrophytes showed positive relationship with P concentration in water. The experiments on the decomposition of the litter using different mesh sized litter bag did not show significant differences between them. The results suggest that the decomposition of emergent macrophytes in fresh water of lake Paldang, which showed features of lentic and lower part of a stream, was affected by microbial activities better than the micro-invertebrates such as shredders.

Distribution of Aquatic Macrophytes in the Lttoral Zone of Lake Platangho, Korea (팔당호 연안대에서 대형수생식물의 분포)

  • Cho, Kang-Hyun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.4
    • /
    • pp.435-442
    • /
    • 1994
  • In the littoral zone of Lake Paltangho, a vegetation map of aquatic macrophytes was constructed to estimate their occupied area, and the change of abundance of submersed macrophytes was examined along water depth to elucidate niche perferences on the depth gradient. Total area of the littoral zone was 267 ha, of which submersed, emergent and floating-leaved macrophytes covered 155ha, 103 ha and 10ha, respectively. Submersed macrophytes were distributed within a water-depth of 2.5m, with an apparent pattern of zonation: Vallisnaria gigantea and Ceratophyllum demersum at the deeper water depth of 1.5~2.5m.

  • PDF

A Vegetation Purification System for Water Quality Improvement in Irrigation Reservoirs (저수지 수질개선을 위한 식생정화시스템)

  • 박병흔
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.87-95
    • /
    • 2000
  • A vegetation purification system was applied to improve water quality of Masan Reservoir in Korea, which was composed of constructed wetlands in series. Five different kinds of macrophytes were planted in each wetland. The system was operated with the condition of low concentrations and high hydraulic loadings. Removal efficiencies(%) of chemical oxygen demand(COD) , total nitrogen(T-N) and total phosphorus(T-P) in this system were 9.0, 12.8, 20.1% , respectively. and removal rates(g/$m^2$/d) were 1.9(COD), 0.34(T-N) and 0.05(T-P) . Comparing this system with other wetlands operated at low hydraulic loadings, average removal efficiencies were low but removal rates were relatively high. Accordingly, this system could be applied to imporve reservoir water quality, because removal rates are more important than removal efficiencies in case of reservoir water quality improvement . However, the removal efficiencies and rates of this system are less than those of the hydroponic biofilter method which is a kind of a constructed wetland and utilize root zones of emergent macrophytes for trapping pollutants. Therefore, it is recommended that this system should be modified to utilize root zones of emergent macrophytes enough to improve reservoir water quality more efficiently.

  • PDF

Distribution and attachment characteristics of Sida crystallina (O.F. Müller, 1776) in lentic freshwater ecosystems of South Korea

  • Choi, Jong-Yun;Jeong, Kwang-Seuk;Kim, Seong-Ki;Son, Se-Hwan;Joo, Gea-Jae
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.45-54
    • /
    • 2016
  • Background: Macrophytes are commonly utilised as habitat by epiphytic species; thus, complex macrophyte structures can support high diversities and abundances of epiphytic species. We tested the hypothesis that the presence of aquatic macrophytes is an important factor determining Sida crystallina (O.F. Muller, 1776) distribution. Results: An ecological survey was conducted in 147 lentic freshwater bodies. S. crystallina was frequently observed, and its density was strongly associated with macrophyte abundance. S. crystallina was found on emergent plant species such as Phragmites australis and Paspalum distichum, attached to the stem surfaces by adhesive substances secreted by the nuchal organ. Thus, S. crystallina was more strongly attached to macrophytes than to other epiphytic cladoceran species. We found higher densities of S. crystallina in filtered water with increased macrophyte shaking effort (i.e. 10, 20, 40, or 80 times). S. crystallina attachment was not related to fish predation. Stable isotope analysis showed that S. crystallina utilises epiphytic organic matter (EOM) on macrophytes as a food source. Conclusions: Consequently, S. crystallina seems to have a strong association with species-specific macrophyte biomass than with other cladoceran species, which may contribute to this species' predominance in various freshwater ecosystems where macrophytes are abundant.