Browse > Article
http://dx.doi.org/10.5141/JEFB.2011.044

The role of macrophytes in wetland ecosystems  

Rejmankova, Eliska (Department of Environmental Science and Policy, University of California Davis)
Publication Information
Journal of Ecology and Environment / v.34, no.4, 2011 , pp. 333-345 More about this Journal
Abstract
Aquatic macrophytes, often also called hydrophytes, are key components of aquatic and wetland ecosystems. This review is to briefly summarizes various macrophyte classifications, and covers numerous aspects of macrophytes' role in wetland ecosystems, namely in nutrient cycling. The most widely accepted macrophyte classification differentiates between freely floating macrophytes and those attached to the substrate, with the attached, or rooted macrophytes further divided into three categories: floating-leaved, submerged and emergent. Biogeochemical processes in the water column and sediments are to a large extent influenced by the type of macrophytes. Macrophytes vary in their biomass production, capability to recycle nutrients, and impacts on the rhizosphere by release of oxygen and organic carbon, as well as their capability to serve as a conduit for methane. With increasing eutrophication, the species diversity of wetland macrophytes generally declines, and the speciose communities are being replaced by monoculture-forming strong competitors. A similar situation often happens with invasive species. The roles of macrophytes and sediment microorganisms in wetland ecosystems are closely connected and should be studied simultaneously rather than in isolation.
Keywords
eutrophication; habitat; invasive species; macrophyte; methane; nitrogen; phosphorus; resorption; wetland;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Feller IC, McKee KL, Whigham DF, O'Neill JP. 2002. Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry 62: 145-175.
2 Feller IC, Whigham DE, O'Neill JP, McKee KL. 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80: 2193-2205.   DOI   ScienceOn
3 Foulds W. 1993. Nutrient concentrations of foliage and soil in South-Western Australia. New Phytol 125: 529-546.   DOI
4 Gessner F. 1955. Hydrobotanik. Die physiologischen Grundlagen der Pflanzen-verrbreitung im Wasser. VEB Deutscher Verlag der Wissenschaften, Berlin.
5 Gonzalez Sagrario MDLA, Balseiro E. 2010. The role of macroinvertebrates and fish in regulating the provision by macrophytes of refugia for zooplankton in a warm temperate shallow lake. Freshw Biol 55: 2153-2166.   DOI
6 Grieco JP, Achee NL, Andre RG, Roberts DR. 2000. A comparison study of house entering and exiting behavior of Anopheles vestitipennis (Diptera: Culicidae) using experimental huts sprayed with DDT or deltamethrin in the southern district of Toledo, Belize, C.A. J Vector Ecol 25: 62-73.
7 Grieco JP, Rejmánková E, Achee NL, Klein CN, Andre R, Roberts D. 2007. Habitat suitability for three species of Anopheles mosquitoes: larval growth and survival in reciprocal placement experiments. J Vector Ecol 32: 176-187.   DOI
8 Grosse W, Frick HJ. 1999. Gas transfer in wetland plants controlled by Graham's law of diffusion. Hydrobiologia 415: 55-58.   DOI
9 Denny P. 1985. The Ecology and Management of African Wetland Vegetation: A Botanical Account of African Swamps and Shallow Waterbodies. Dr. W. Junk, The Hague.
10 Diaz S, Cabido M. 1997. Plant functional types and ecosystem function in relation to global change. J Veg Sci 8: 463-474.   DOI
11 Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM Jr, Turner RE, Corredor J, Soto D, Yanez-Arancibia A, Kopaska JA, Howarth RW. 1999. The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46: 109-148.
12 Duff SMG, Sarath G, Plaxton WC. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiol Plant 90: 791-800.   DOI
13 Dvorak J. 1996. An example of relationships between macrophytes, macroinvertebrates and their food resources in a shallow eutrophic lake. Hydrobiologia 339: 27-36.   DOI
14 Dvorak J, Best EPH. 1982. Macro-invertebrate communities associated with the macrophytes Of Lake Vechten: structural and functional relationships. Hydrobiologia 95: 115-126.   DOI
15 Egertson CJ, Kopaska JA, Downing JA. 2004. A century of change in macrophyte abundance and composition in response to agricultural eutrophication. Hydrobiologia 524: 145-156.   DOI
16 Elliott GN, Chou JH, Chen WM, Bloemberg GV, Bontemps C, Martínez-Romero E, Velazquez E, Young JPW, Sprent JI, James EK. 2009. Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11: 762-778.   DOI
17 Engelhardt KAM, Ritchie ME. 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687-689.   DOI
18 Casanova MT. 2011. Using water plant functional groups to investigate environmental water requirements. Freshw Biol 56: 2637-2652.   DOI
19 Chanton JP, Whiting GJ, Happell JD, Gerard G. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquat Bot 46: 111-128.   DOI
20 Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9-26.   DOI
21 Christensen TR, Friborg T, Sommerkorn M, Kaplan J, Illeris L, Soegaard H, Nordstroem C, Jonasson S. 2000. Trace gas exchange in a high-arctic valley. 1. Variations in $CO_2$ and $CH_4$ flux between tundra vegetation types. Global Biogeochem Cycles 14: 701-713.   DOI
22 Cook CDK. 1996. Aquatic Plant Book. 2nd ed. SPB Academic Publishing, Amsterdam/New York.
23 Costanza R, d'Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O'Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260.   DOI
24 Couteaux MM, Bottner P, Ber B. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10: 63-66.   DOI
25 Crow GE. 1993. Species diversity in aquatic angiosperms: latitudinal patterns. Aquat Bot 44: 229-258.   DOI
26 Dacey JWH. 1980. Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017-1019.   DOI
27 Dakora FD, Drake BG. 2000. Elevated $CO_2$ stimulates associative $N_2$ fixation in a $C_3$ plant of the Chesapeake Bay wetland. Plant Cell Environ 23: 943-953.   DOI
28 Den Hartog C, Segal S. 1964. A new classification of the water- plant communities. Acta Bot Neerl 13: 367-393.   DOI
29 Bornette G, Puijalon S. 2011. Response of aquatic plants to abiotic factors: a review. Aquat Sci 73: 1-14.   DOI
30 Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20: 30-59.   DOI
31 Bouchard V, Frey SD, Gilbert JM, Reed SE. 2007. Effects of macrophyte functional group richness on emergent freshwater wetland functions. Ecology 88: 2903-2914.   DOI
32 Boutin C, Keddy PA. 1993. A functional classification of wet land plants. J Veg Sci 4: 591-600.   DOI
33 Brix H, Sorrell BK, Orr PT. 1992. Internal pressurization and convective gas-flow in some emergent freshwater macrophytes. Limnol Oceanogr 37: 1420-1433.   DOI
34 Brock MA, Casanova MT. 1997. Plant life at the edges of wetlands: ecological responses to wetting and drying patterns. In: Frontiers in Ecology: Building the Links (Klomp NI, Lunt ID, eds). Elsevier Science, Oxford, pp 181-192.
35 Brown AM, Bledsoe C. 1996. Spatial and temporal dynamics of mycorrhizas in Jaumea carnosa, a tidal saltmarsh halophyte. J Ecol 84: 703-715.   DOI
36 Bunemann EK, Bossio DA, Smithson PC, Frossard E, Oberson A. 2004. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol Biochem 36: 889-901.   DOI
37 Cai ZQ, Bongers F. 2007. Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, South-west China. J Trop Ecol 23: 115-118.   DOI
38 Aerts R, Chapin FS. 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30: 1-67.
39 Caraco N, Cole J, Findlay S, Wigand C. 2006. Vascular plants as engineers of oxygen in aquatic systems. BioScience 56: 219-225.   DOI
40 Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84: 597-608.   DOI
41 Aerts R, de Caluwe H. 1997. Initial litter respiration as indicator for long-term leaf litter decomposition of Carex species. Oikos 80: 353-361.   DOI
42 Alvarez S, Guerrero MC. 2000. Enzymatic activities associated with decomposition of particulate organic matter in two shallow ponds. Soil Biol Biochem 32: 1941-1951.   DOI
43 Armstrong J, Armstrong W. 1991. A convective through-flow of gases in Phragmites australis (Cav.) Trin. ex Steud. Aquat Bot 39: 75-88.   DOI
44 Armstrong W, Armstrong J, Beckett PM. 1996. Pressurised ventilation in emergent macrophytes: the mechanism and mathematical modelling of humidity-induced convection. Aquat Bot 54: 121-135.   DOI
45 Armstrong W, Brandle R, Jackson MB. 1994. Mechanisms of flood tolerance in plants. Acta Bot Neerl 43: 307-358.   DOI
46 Ayyappan S, Olah J, Raghavan SL, Sinha VRP, Purushothaman CS. 1986. Macrophyte decomposition in two tropical lakes. Arch Hydrobiol 106: 219-231.
47 Baar J, Paradi I, Lucassen ECHET, Hudson-Edwards KA, Redecker D, Roelofs JGM, Smolders AJP. 2011. Molecular analysis of AMF diversity in aquatic macrophytes: a comparison of oligotrophic and utra-oligotrophic lakes. Aquat Bot 94: 53-61.   DOI
48 Adam P. 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.
49 Bedford BL, Walbridge MR, Aldous A. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151-2169.   DOI
50 Achee NL, Korves CT, Bangs MJ, Rejmankova E, Lege M, Curtin D, Lenares H, Alonzo Y, Andre RG, Roberts DR. 2000. Plasmodium vivax polymorphs and Plasmodium falciparum circumsporozoite proteins in Anopheles (Diptera: Culicidae) from Belize, Central America. J Vector Ecol 25: 203-211.
51 Verhoeven JTA, Koerselman W, Meuleman AFM. 1996. Nitrogen- or phosphorus-limited growth in herbaceous, wet vegetation: relations with atmospheric inputs and management regimes. Trends Ecol Evol 11: 494-497.   DOI
52 Willby NJ, Pulford ID, Flowers TH. 2001. Tissue nutrient signatures predict herbaceous-wetland community responses to nutrient availability. New Phytol 152: 463-481   DOI
53 Zedler JB. 2011. Wetlands. In: Encyclopedia of Biological Invasions (Simberloff D, Rejmanek M, eds). University of California Press. Betrkeley, pp 698-704.
54 Tessier JT, Raynal DJ. 2003. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. J App Ecol 40: 523-534.   DOI
55 Ticconi CA, Abel S. 2004. Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9: 548-555.   DOI
56 Timms RM, Moss B. 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol Oceanogr 29: 472-486.   DOI
57 Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423-447.   DOI
58 Venterink HO, Wassen MJ, Verkroost AWM, de Ruiter PC. 2003. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology 84: 2191-2199.   DOI
59 Vitousek PM. 2004. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton, NJ.
60 Weiher E, Clarke GDP, Keddy PA. 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81: 309-322.   DOI
61 Weishampel PA, Bedford BL. 2006. Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16: 495-502.   DOI
62 Wetzel RG. 1975. Limnology. W. B. Saunders Co., Philadelphia, PA.
63 Scott JT, Doyle RD, Back JA, Dworkin SI. 2007. The role of $N_2$ fixation in alleviating N limitation in wetland metaphyton: enzymatic, isotopic, and elemental evidence. Biogeochemistry 84: 207-218.   DOI
64 Sculthorpe CD. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold, London.
65 Shaver GR, Melillo JM. 1984. Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491-1510.   DOI
66 Stevens KJ, Peterson RL. 2007. Relationships among three pathways for resource acquisition and their contribution to plant performance in the emergent aquatic plant Lythrum salicaria (L.). Plant Biol 9: 758-765.   DOI
67 Sieben EJJ, Morris CD, Kotze DC, Muasya AM. 2010. Changes in plant form and function across altitudinal and wetness gradients in the wetlands of the Maloti-Drakensberg, South Africa. Plant Ecol 207: 107-119.   DOI
68 Sorrell BK, Chague-Goff C, Basher LM, Partridge TR. 2011. N:P ratios, delta(15)N fractionation and nutrient resorption along a nitrogen to phosphorus limitation gradient in an oligotrophic wetland complex. Aquat Bot 94: 93-101.   DOI
69 Sterner RW, Elser JJ. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Prinston, NJ.
70 Strom L, Ekberg A, Mastepanov M, Christensen TR. 2003. The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Glob Change Biol 9: 1185-1192.   DOI
71 Strom L, Mastepanov M, Christensen TR. 2005. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands. Biogeochemistry 75: 65-82.   DOI
72 Rejmankova E, Grieco J, Achee N, Masuoka P, Pope K, Roberts D, Higashi RM. 2006. Freshwater community interactions and malaria. In: Disease Ecology: Community Structure and Pathogen Dynamics (Collinge SK, Ray C, eds). Oxford University Press, Cary, NC, pp 90-105.
73 Rejmankova E, Houdkova K. 2006. Wetland macrophyte decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80: 245-262.   DOI
74 Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321: 305-339.   DOI
75 Rejmankova E, Sirova D, Carlson E. 2011. Patterns of activities of root phosphomonoesterase and phosphodiesterase in wetland plants as a function of macrophyte species and ambient phosphorus regime. New Phytol 190: 968-976.   DOI
76 Rejmankova E, Snyder JM. 2008. Emergent macrophytes in phosphorus limited marshes: Do phosphorus usage strategies change after nutrient addition? Plant Soil 313: 141-153.   DOI
77 Rejmankova E, Macek P, Epps K. 2008. Wetland ecosystem changes after three years of phosphorus addition. Wetlands 28: 914-927.   DOI
78 Richardson CJ. 2008. The Everglades Experiment : Lessons for Ecosystem Restoration. Ecological Studies, Vol. 201. Springer, New York.
79 Santruckova H, Rejmankova E, Pivnickova B, Snyder JM. 2010. Nutrient enrichment in tropical wetlands: shifts from autotrophic to heterotrophic nitrogen fixation. Biogeochemistry 101: 295-310.   DOI
80 Schimel JP. 1995. Plant transport and methane production as controls on methane flux from arctic wet meadow tundra. Biogeochemistry 28: 183-200.   DOI
81 Nygaard B, Ejrnæs R. 2004. A new approach to functional interpretation of vegetation data. J Veg Sci 15: 49-56.   DOI
82 Peat HJ, Fitter AH. 1993. The distribution of arbuscular mycorrhizas in the British Flora. New Phytol 125: 845-854.   DOI
83 Raab TK, Lipson DA, Monson RK. 1999. Soil amino acid utilization among species of the Cyperaceae: plant and soil processes. Ecology 80: 2408-2419.   DOI
84 Pettit NE, Bayliss P, Davies PM, Hamilton SK, Warfe DM, Bunn SE, Douglas MM. 2011. Seasonal contrasts in carbon resources and ecological processes on a tropical floodplain. Freshw Biol 56: 1047-1064.   DOI
85 Phoenix GK, Booth RE, Leake JR, Read DJ, Grime JP, Lee JA. 2004. Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities of three plant functional types in a calcareous grassland. New Phytol 161: 279-290.
86 Pope K, Masuoka P, Rejmankova E, Grieco J, Johnson S, Roberts D. 2005. Mosquito habitats, land use, and malaria risk in Belize from satellite imagery. Ecol Appl 15: 1223-1232.   DOI
87 Raghothama KG. 1999. Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665-693.   DOI
88 Reinhold-Hurek B, Hurek T. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol 6: 139-144.   DOI
89 Rejmankova E. 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K) Raven. Aquat Bot 43: 283-299.   DOI
90 Rejmankova E. 2005. Nutrient resorption in wetland macrophytes: comparison across several regions of different Philadelnutrient status. New Phytol 167: 471-482.   DOI
91 Kim JG, Rejmankova E. 2004. Decomposition of macrophytes and dynamics of enzyme activities in subalpine marshes in Lake Tahoe basin, U.S.A. Plant Soil 266: 303-313.
92 Koerselman W, Meuleman AFM. 1996. The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441-1450.   DOI
93 Lavoie C. 2010. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol Invasions 12: 1967-1999.   DOI
94 Laanbroek HJ. 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot 105: 141-153.   DOI
95 Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H. 2011. New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57: 21-28.   DOI
96 Lambers H, Chapin FS 3rd, Pons TL. 1998. Plant Physiological Ecology. Springer, Berlin.
97 Lavorel S, McIntyre S, Landsberg J, Forbes TDA. 1997. Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends Ecol Evol 12: 474-478.   DOI
98 Liski J, Nissinen A, Erhard M, Taskinen O. 2003. Climatic effects on litter decomposition from arctic tundra to tropical rainforest. Glob Change Biol 9: 575-584.   DOI   ScienceOn
99 Mitsch WJ, Gosselink JG, Anderson CJ, Zhang L. 2009. Wetland Ecosystems. John Wiley & Sons, Hoboken.
100 Morris JT, Bradley PM. 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnol Oceanogr 44: 699-702.   DOI
101 Nausch M, Nausch G. 2000. Stimulation of peptidase activity in nutrient gradients in the Baltic Sea. Soil Biol Biochem 32: 1973-1983.   DOI
102 Hoorens B, Aerts R, Stroetenga M. 2003. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia 137: 578-586.   DOI
103 Hutchinson GE. 1975. A Treatise on Limnology. III. Limnological Botany. John Wiley, New York.
104 Juutinen S, Larmola T, Remus R, Mirus E, Merbach W, Silvola J, Augustin J. 2003. The contribution of Phragmites australis litter to methane ($CH_4$) emission in planted and non-planted fen microcosms. Biol Fertil Soils 38: 10-14.   DOI
105 Ipsilantis I, Sylvia DM. 2007. Interactions of assemblages of mycorrhizal fungi with two Florida wetland plants. Appl Soil Ecol 35: 261-271.   DOI
106 Jonasson S, Shaver GR. 1999. Within-stand nutrient cycling in arctic and boreal wetlands. Ecology 80: 2139-2150.   DOI
107 Junk WJ. 1997. Structure and function of the large central Amazonian River floodplains: synthesis and discussion. In: The Central Amazon Floodplain: Ecology of a Pulsing System (Junk WJ, ed). Springer, Berlin, pp 455-473.
108 Kandalepas D, Stevens KJ, Shaffer GP, Platt WJ. 2010. How abundant are root-colonizing fungi in Southeastern Louisiana's degraded marshes? Wetlands 30: 189-199.   DOI
109 Kao-Kniffin J, Freyre DS, Balser TC. 2010. Methane dynamics across wetland plant species. Aquat Bot 93: 107-113.   DOI
110 Kerdchoechuen O. 2005. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield. Agric Ecosyst Environ 108: 155-163.   DOI
111 Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727.   DOI
112 Gusewell S. 2004. N : P ratios in terrestrial plants: variation and functional significance. New Phytol 164: 243-266.   DOI
113 Hart MM, Reader RJ, Klironomos JN. 2003. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends Ecol Evol 18: 418-423.   DOI
114 Gusewell S. 2005. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct Ecol 19: 344-354.   DOI
115 Gusewell S, Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspect Plant Ecol Evol Syst 5: 37-61.   DOI
116 Hagerthey SE, Cole JJ, Kilbane D. 2010. Aquatic metabolism in the Everglades: dominance of water column heterotrophy. Limnol Oceanogr 55: 653-666.   DOI
117 Hejny S. 1960. Okologische Charakteristik der Wasser-und Sumpfpflanzen in der Slowakischen Tiefebenen. Slowakische Akademie der Wissenschaften, Bratislava.
118 Herbert RA. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23: 563-590.   DOI
119 Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H. 2001. Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10: 175-183.   DOI
120 Hill BH, Elonen CM, Jicha TM, Cotter AM, Trebitz AS, Danz NP. 2006. Sediment microbial enzyme activity as an indicator of nutrient limitation in Great Lakes coastal wetlands. Freshw Biol 51: 1670-1683.   DOI
121 Holdredge C, Bertness MD, von Wettberg E, Silliman BR. 2010. Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119: 1776-1784.   DOI
122 Ervin G, Smothers M, Holly C, Anderson C, Linville J. 2006. Relative importance of wetland type versus anthropogenic activities in determining site invasibility. Biol Invasions 8: 1425-1432.   DOI