Browse > Article
http://dx.doi.org/10.1186/s41610-016-0006-z

Distribution and attachment characteristics of Sida crystallina (O.F. Müller, 1776) in lentic freshwater ecosystems of South Korea  

Choi, Jong-Yun (National Institute of Ecology)
Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University)
Kim, Seong-Ki (Nakdong River Environment Research Center)
Son, Se-Hwan (National Institute of Ecology)
Joo, Gea-Jae (Department of Biological Sciences, Pusan National University)
Publication Information
Journal of Ecology and Environment / v.40, no.1, 2016 , pp. 45-54 More about this Journal
Abstract
Background: Macrophytes are commonly utilised as habitat by epiphytic species; thus, complex macrophyte structures can support high diversities and abundances of epiphytic species. We tested the hypothesis that the presence of aquatic macrophytes is an important factor determining Sida crystallina (O.F. Muller, 1776) distribution. Results: An ecological survey was conducted in 147 lentic freshwater bodies. S. crystallina was frequently observed, and its density was strongly associated with macrophyte abundance. S. crystallina was found on emergent plant species such as Phragmites australis and Paspalum distichum, attached to the stem surfaces by adhesive substances secreted by the nuchal organ. Thus, S. crystallina was more strongly attached to macrophytes than to other epiphytic cladoceran species. We found higher densities of S. crystallina in filtered water with increased macrophyte shaking effort (i.e. 10, 20, 40, or 80 times). S. crystallina attachment was not related to fish predation. Stable isotope analysis showed that S. crystallina utilises epiphytic organic matter (EOM) on macrophytes as a food source. Conclusions: Consequently, S. crystallina seems to have a strong association with species-specific macrophyte biomass than with other cladoceran species, which may contribute to this species' predominance in various freshwater ecosystems where macrophytes are abundant.
Keywords
Sida crystallina; Aquatic macrophytes; Attachment characteristics; Stable isotope analysis; Lentic freshwater ecosystems;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Meerhoff, M., Iglesias, C., De Mello, F. T., Clemente, J. M., Jensen, E., Lauridsen, T. L., & Jeppesen, E. (2007). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology, 52, 1009-1021.   DOI
2 Minagawa, M., & Wada, E. (1984). Stepwise enrichment of ${\delta}^{15}N$ along food chains: further evidence and the relation between d15N and animal age. Geochem Cosmochim Acta, 48, 1135-1140.   DOI
3 Mizuno, T., & Takahashi, E. (1991). An illustrated guide to freshwater zooplankton in japan. Tokyo: Tokai University Press.
4 Choi, J. Y., Jeong, K. S., La, G. H., Kim, H. W., Chang, K. H., & Joo, G. J. (2011). Interannual variability of a zooplankton community: the importance of summer concentrated rainfall in a regulated river ecosystem. Journal of Ecology and Field Biologyl, 34, 49-58.   DOI
5 Choi, J. Y., Jeong, K. S., La, G. H., & Joo, G. J. (2014). Effect of removal of freefloating macrophytes on zooplankton habitat in shallow wetland. Knowledge Management Aquatic Ecosystems, 414, 11.
6 O’Hare, M. T., Baattrup-Pedersen, A., Nijboer, R., Szoszkiewicz, K., & Ferreira, T. (2006). Macrophyte communities of European streams with altered physical habitat. Hydrobiology, 566, 197-210.   DOI
7 Moss, B., Kornijow, R., & Measey, G. (1998). The effect of nymphaeid (Nuphar lutea) density and predation by perch (Perca fluviatilis) on the zooplankton communities in a shallow lake. Freshwater Biology, 39, 689-697.   DOI
8 Nurminen, L., Horppila, J., & Tallberg, P. (2001). Seasonal development of the cladoceran assemblage in a turbid lake: role of emergent macrophytes. Archiv fur Hydrobiologie, 151, 127-1540.   DOI
9 Nurminen, L., Horppila, J., & Pekcan-Hekim, Z. (2007). Effect of light and predator abundance on the habitat choice of plant-attached zooplankton. Freshwater Biology, 52, 539-548.   DOI
10 Phillips, D. L., & Gregg, J. W. (2001). Uncertainty in source partitioning using stable isotopes. Oecologia, 127, 171-179.   DOI
11 Pinnegar, J. K., & Polunin, N. V. C. (1999). Differential fractionation of ${\delta}^{13}C$ and ${\delta}^{15}N$ among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13, 225-231.   DOI
12 Denny, P. (1994). Biodiversity and wetlands. Wetland Ecology and Management, 3, 55-61.
13 Choi, J. Y., Jeong, K. S., La, G. H., Kim, S. K., & Joo, G. J. (2014). Sustainment of epiphytic microinvertebrate assemblage in relation with different aquatic plant microhabitats in freshwater wetlands (South Korea). Journal of Limnology, 73, 197-202.
14 Choi, J. Y., Jeong, K. S., Kim, S. K., La, G. H., Chang, K. H., & Joo, G. J. (2014). Role of macrophytes as microhabitats for zooplankton community in lentic freshwater ecosystems of South Korea. Ecology Information, 24, 177-185.   DOI
15 De Meester, L., & Cousyn, C. (1997). The change in phototactic behaviour of a Daphnia magna clone in the presence of fish kairomones: the effect of exposure time. In Cladocera: the Biology of Model Organisms (pp. 169-175). Netherlands: Springer.
16 Downing, J. A., & Peters, R. H. (1980). The effect of body size and food concentration on the in situ filtering rate of Sida crytallina. Limnology and Ocreanography, 25, 883-895.   DOI
17 Fairchild, G. W. (1981). Movement and microdistribution of Sida crystallina and other littoral microcrustacea. Ecology, 62, 1341-1354.   DOI
18 Findlay, C. S. T., & Bourdages, J. (2000). Response time of wetland biodiversity to road construction on adjacent lands. Conservation Biology, 14, 86-94.   DOI
19 Sakuma, M., Hanazato, T., Saji, A., & Nakazato, R. (2004). Migration from plant to plant: an important factor controlling densities of the epiphytic cladoceran Alona (Chydoridae, Anomopoda) on lake vegetation. Limnology, 5, 17-23.   DOI
20 Sakuma, M., Hanazato, T., Nakazato, R., & Haga, H. (2002). Methods for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Limnology, 3, 115-119.   DOI
21 Stansfield, J. H., Perrow, M. R., Tench, L. D., Jowitt, A. J., & Taylor, A. A. (1997). Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. In Shallow Lakes' 95 (pp. 229-240). Netherlands: Springer.
22 Gyllstrom, M., Hansson, L. A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, T., Kornijow, R., Miracle, M., Nykanen, M., Noges, T., Romo, S., Stephen, D., Van Donk, E., & Moss, B. (2005). The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Ocreanography, 50, 2008-2021.   DOI
23 Schindler, D. E., & Scheuerell, M. D. (2002). Habitat coupling in lake ecosystems. Oikos, 98, 177-189.   DOI
24 Smokorowski, K. E., & Pratt, T. C. (2007). Effect of a change in physical structure and cover on fish and fish habitat in freshwater ecosystems-a review and meta-analysis. Environmental Review, 15, 15-41.   DOI
25 Son, M. W., & Jeon, Y. G. (2002). Physical geographical characteristics of natural wetlands on the downstream reach of Nakdong River. Journal of the Korean Association of Geographic Information Studies, 9, 66-76.
26 Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22, 27-42.   DOI
27 Takai, N., Mishima, Y., Yorozu, A., & Hoshika, A. (2002). Carbon sources for demersal fish in the western Seto Inland Sea, Japan, examined by ${\delta}^{13}C$ and ${\delta}^{15}N$ analyses. Limnology and Oceanography, 47, 471-730.   DOI
28 Korean Ministry of Environment. (2006). [Inland wetlands investigation: Sandle Wetland, Hwapo Wetland, Jangcheok Wetland and Gumgang Wetland]. [Report in Korean] (p. 348). Seoul: Korean Ministry of Environment & National Wetlands Center.
29 Jeong, K. S., Kim, D. K., & Joo, G. J. (2007). Delayed influence of dam storage and discharge on the determination of seasonal proliferations of Microcystis aeruginosa and Stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research, 41, 1269-1279.   DOI
30 Jeppesen, E., Lauridsen, T. L., Kairesalo, T., & Perrow, M. R. (1998). Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In The structuring role of submerged macrophytes in lakes (pp. 91-114). New York: Springer.
31 Kotov, A. A., & Boikova, O. (1998). Comparative analysis of the late embryogenesis of Sida crystallina (O.F. Muller, 1776) and Diaphanosoma brachyurum (Lievin, 1848) (Crustacea: Branchiopoda: Ctenopoda). Hydrobiologia, 380, 103-125.   DOI
32 Kuczynska-Kippen, N. M., & Nagengast, B. (2006). The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of rotifer and cladoceran communities. Hydrobiologia, 559, 203-212.   DOI
33 Lauridsen, T. L., & Lodge, D. M. (1996). Avoidance by Daphnia magna of fish and macrophytes: chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography, 41, 794-798.   DOI
34 Wetzel, R. G., & Likens, G. E. (2000). Limnological analyses. 429 pp, Springer-Veralag New York. Berlin Heidelberg Spin springer.
35 Lauridsen, T., Pedersen, L. J., Jeppesen, E., & Sonergaard, M. (1996). The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. Journal of Plankton Research, 18, 2283-2294.   DOI
36 Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., & Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology, 53, 358-367.
37 Thorp, J., & Covich, A. P. (2001). Ecology and classification of North Amirican invertebrates (2nd ed., p. 950). San Diego: Academic Press.
38 Vermaat, J. E., Santamaria, L., & Roos, P. J. (2000). Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archives of Hydrobiology, 148, 549-562.   DOI
39 Vieira, L. C. G., Bini, L. M., Velho, L. F. M., & Mazao, G. R. (2007). Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fundamental and Applied Limnology, 170, 77-85.   DOI
40 Zaret, T. M., & Suffern, J. S. (1976). Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography, 21, 804-813.   DOI
41 Castilho-Noll, M. S. M., Câmara, C. F., Chicone, M. F., & Shibata, E. H. (2010). Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of Sao Paulo State, Brazil. Biota Neotropica, 10, 21-30.
42 Balayla, D. J., & Moss, B. (2003). Spatial patterns and population dynamics of plant-associated microcrustacea (cladocera) in an English shallow lake (Little Mere, Cheshire). Aquatic Ecology, 37, 417-435.   DOI
43 Burkett, V., & Kusler, J. (2000). Climate change: potential impacts and interactions in wetlands of the United States. Journal of the American Water Resources Association, 36, 313-320.   DOI
44 Burks, R., Lodge, D. M., Jeppesen, E., & Lauridsen, T. L. (2002). Diel horizontal migration of zooplankton: costs and benefits of inhabiting littoral zones. Freshwater Biology, 47, 343-365.   DOI
45 Cattaneo, A., Galanti, G. G., Gentinetta, S., & Romo, S. (1998). Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology, 39, 725-740.   DOI