• Title/Summary/Keyword: Emergency Response Model

Search Result 122, Processing Time 0.025 seconds

A Study on Air Traffic Controllers' Cultural bias and Their Response on Abnormal Situations (항공교통관제사의 문화적 편향(Cultural Bias)에 따른 위기 대응 연구)

  • Kim, Geun-Su;Cho, Sung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.4
    • /
    • pp.64-75
    • /
    • 2018
  • A status of air traffic controller is a government officer and air traffic controllers who work at airport are divided by duty rating and work experience. Abiding by law, rules and regulation, air traffic controllers are working together based on mutual trust. This paper's theoretical background is based on cultural bias theory. The theory divide people group into four groups according to cultural bias such as fatalism, hierarchy, individualism and egalitarianism. A research model was designed how such four cultural bias could affect air traffic controller's risk response in case of emergency or abnormal situation during their work. Depend on empirical research, it was found that air traffic controllers perceived they had been more biased to fatalism than hierarchy. The characteristics of fatalism group are as follows: first of all, they follow rigid rules and regulation. However, they have less self-efficacy compared to other government officers. According to structural equation model, air traffic controller's fatalism had a significant negative effect on organizational royalty. Their royalty, however, had a very significant positive effect on planning response and immediate response.

Utilization and Excavation Practices of Fire-Fighting Vulnerable Zone Model (소방취약지 모델의 활용 및 적용사례 발굴)

  • Choi, Gap Yong;Chang, Eun Mi;Kim, Seong Gon;Cho, Kwang-Hyun
    • Spatial Information Research
    • /
    • v.22 no.3
    • /
    • pp.79-87
    • /
    • 2014
  • In order to foster rapid disaster response and public life protection, National Emergency Management Agency has been trying to spread 'Emergency Rescue Standard System' on a national scale since 2006. The agency has also intensified management of firefighter's safety on disaster site by implementing danger predication training, specialized training and education and safety procedure check as a part of safety management officer duties. Nevertheless, there are limitations for effective fire fighting steps, such as damage spreading and life damage due to unawareness of illegal converted structure, structure transformation by high temperature and nearby hazardous material storage as well as extemporary situation handling endangered firefighter's life. In order to eliminate these limitations there is a need for an effort and technology application to minimize human errors such as inaccurate situational awareness, wrong decision built on experience and judgment of field commander and firefighters. The purpose of this study is to propose a new disaster response model which is applied with geospatial information. we executed spatial contextual awareness map analysis using fire-fighting vulnerable zone model to propose the new disaster response model and also examined a case study for Dalseo-gu in Daegu Metropolitan City. Finally, we also suggested operational concept of new proposed model on a national scale.

Architecture Design for Disaster Prediction of Urban Railway and Warning System (UR-DPWS) based on IoT (IoT 기반 도시철도 재난 예지 및 경보 시스템 아키텍처 설계)

  • Eung-young Cho;Joong-Yoon Lee;Joo-Yeoun Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.163-174
    • /
    • 2024
  • Currently, the urban railway operating agency is improving the emergency telephone in operation into an IP-based "trackside integrated interface communication facility" that can support a variety of additional services in order to quickly respond to emergency situations within the tunnel. This study is based on this Analyze the needs of various stakeholders regarding the design of a system architecture that establishes an IoT sensor network environment to detect abnormal situations in the tunnel and transmits the collected information to the control center to predict disaster situations in advance, and defines the system requirements. In addition, a scenario model for disaster response was provided through the presentation of a service model. Through this, the perspective of responding to urban railway disasters changes from reactive response to proactive prevention, thereby ensuring safe operation of urban railways and preventing major industrial accidents.

Numerical Study of Effect of counter-pulsation on Hemodynamic Response in the ECLS (체외생명구조장치에서 역박동 방법이 혈류역학 응답에 미치는 영향에 대한 수치적 연구)

  • Kim, In-Su;Lim, Ki-Moo;Choi, Seoung-Wook;Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1660-1664
    • /
    • 2008
  • Extra-corporeal Life Support System (ECLS) is the device used in emergency cases to substitute a extracorporeal circulation in open heart surgery, cardiac arrest or in acute cardiopulmonary failure. To obtain the effect of counter-pulsation on hemodynamic response in the ECLS quantitatively, we developed cardiovascular model which consists of 12 compartment model of heldt et al. and 3 compartment model of Schreiner et al. based on windkessel approximation. We compared coronary perfusion, arterial pulse pressure, cardiac output, and left ventricular pressure-volume diagram according to flow configuration such as counter-pulsation, copulsation, and continous flow. When counter-pulsation was applied, 5% higher coronary perfusion, 26% lower pulse pressure, and 2% higher cardiac output than copulsation condition were calculated. We conclude that counter-pulsation configuration in the ECLS is hemodynamically more stable than copulsation and influences the positive effect to recover ventricles.

  • PDF

Seismic evaluation of Southern California embankment dam systems using finite element modeling

  • Kamalzare, Mehrad;Marquez, Hector;Zapata, Odalys
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.319-328
    • /
    • 2022
  • Ensuring the integrity of a country's infrastructure is necessary to protect surrounding communities in case of disaster. Embankment dam systems across the US are an essential component of infrastructure, referred to as lifeline structures. Embankment dams are crucial to the survival of life and if these structures were to fail, it is imperative that states be prepared. Southern California is particularly concerned with the stability of embankment dams due to the frequent seismic activity that occurs in the state. The purpose of this study was to create a numerical model of an existing embankment dam simulated under seismic loads using previously recorded data. The embankment dam that was studied in Los Angeles, California was outfitted with accelerometers provided by the California Strong Motion Instrumentation Program that have recorded strong motion data for decades and was processed by the Center for Engineering Strong Motion Data to be used in future engineering applications. The accelerometer data was then used to verify the numerical model that was created using finite element modeling software RS2. The results from this study showed Puddingstone Dam's simulated response was consistent with that experienced during previous earthquakes and therefore validated the predicted behavior from the numerical model. The study also identified areas of weakness and instability on the dam that posed the greatest risk for its failure. Following this study, the numerical model can now be used to predict the dam's response to future earthquakes, develop plans for its remediation, and for emergency response in case of disaster.

Development of a Quantitative Resilience Model for Severe Accident Response Organizations of Nuclear Power Plants: Application of AHP Method (원자력발전소 중대사고 대응 조직에 대한 레질리언스 정량적 모델 개발: AHP 방법 적용)

  • Park, Jooyoung;Kim, Ji-tae;Lee, Sungheon;Kim, Jonghyun
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.1
    • /
    • pp.116-129
    • /
    • 2020
  • Resilience is defined as the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations or functions with the related systems under both expected and unexpected conditions. Resilience engineering is a relatively new paradigm for safety management that focuses on how to cope with complexity under pressure or disturbance to achieve successful functioning. This study aims to develop a quantitative resilience model for severe accident response organizations of nuclear power plants using the Analytic Hierarchy Process (AHP) method. First, we investigated severe accident response organizations based on a radiation emergency plan in the Korean case and developed a qualitative resilience model for the organizations with resilience-influencing factors, which have been identified in the author's previous studies. Then, a quantitative model for entire severe accident response organizations was developed by using the Analytic Hierarchy Process (AHP) method with a tool for System Dynamics. For applying the AHP method, several experts who are working on implementing, regulating or researching the severe accident response participated in collecting their expertise on the relative importance between all the possible relations in the model. Finally, a sensitivity analysis was carried out to discuss which factors have the most influenceable on resilience.

Calculation of Rebar Stress at Splice Failure of RC Columns (RC 기둥의 겹침이음파괴 시 철근의 응력 산정)

  • Cho, Jae-Yeol;Pincheira, Jose A.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.446-449
    • /
    • 2006
  • Several experimental investigations have been carried out to study the behavior of reinforced concrete columns with short lap splices. However, very few analytical models have been developed for the analysis of such columns subjected to earthquakes. As nonlinear analysis procedures become more common in practice (such as those outlined in the Guidelines for Seismic Rehabilitation of Buildings published by the Federal Emergency Management Agency in the United States), the need for an accurate and reliable representation of the nonlinear response of strength degrading systems becomes more important. In this study, an analytical model for estimating the complete response of reinforced concrete columns with short lap splices is presented. The model is based on local bond stress-slip relationships and is validated against independent experimental data from cyclic loading tests on reinforced concrete columns with typical construction details of the 1960s. In this paper a simple equation for calculating the bar stress at splice failure is presented. Use of the proposed equation resulted in excellent agreement between the measured and calculated strength at splice failure.

  • PDF

119 Rescuers' image of Citizens (일반시민의 119구급대원에 대한 이미지)

  • Uhm, Dong-Choon;Kim, Jin-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2259-2266
    • /
    • 2012
  • This study was analyzed the 119 rescuers' image of citizens to provide a fundamental material to improve 119 rescuers' image effectively. This research design was a descriptive study. Data were collected from November 9, 2011 to December 9, 2011, and analyzed by SPSS PASW statistics 18.0 program. Among the 4 subcategories of the image, occupational image was found the highest value($3.17{\pm}0.36$), and the social image($2.81{\pm}0.48$) was found the lowest. There were statistical different between age($p$ <.001), occupation($p$ <.001), whether or not the emergency first response education is completed($p$ <.05), and whether or not 119 emergency service is received($p$ <.05). In the result of multivariate regression analysis, adjusted $R^2$ value was 0.120. The model fit 12.0%. Occupation (students, housewives and office workers) and those who completed emergency first response education were showed a positive image of 119 rescuers. There is a need to compare and analyze the image of 119 rescuers in accordance with whether or not 119 emergency service is received and the satisfaction with the emergency service under the control of the general characteristics(sex, age, occupation, economic level, etc.) of subjects.

Learning Probabilistic Kernel from Latent Dirichlet Allocation

  • Lv, Qi;Pang, Lin;Li, Xiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2527-2545
    • /
    • 2016
  • Measuring the similarity of given samples is a key problem of recognition, clustering, retrieval and related applications. A number of works, e.g. kernel method and metric learning, have been contributed to this problem. The challenge of similarity learning is to find a similarity robust to intra-class variance and simultaneously selective to inter-class characteristic. We observed that, the similarity measure can be improved if the data distribution and hidden semantic information are exploited in a more sophisticated way. In this paper, we propose a similarity learning approach for retrieval and recognition. The approach, termed as LDA-FEK, derives free energy kernel (FEK) from Latent Dirichlet Allocation (LDA). First, it trains LDA and constructs kernel using the parameters and variables of the trained model. Then, the unknown kernel parameters are learned by a discriminative learning approach. The main contributions of the proposed method are twofold: (1) the method is computationally efficient and scalable since the parameters in kernel are determined in a staged way; (2) the method exploits data distribution and semantic level hidden information by means of LDA. To evaluate the performance of LDA-FEK, we apply it for image retrieval over two data sets and for text categorization on four popular data sets. The results show the competitive performance of our method.

A Study on Adequacy Assessment of Protective Action Distance in Hazardous Chemical Accident by AERMOD Modeling (AERMOD 모델링 분석을 통한 유해화학물질 누출사고 시 방호활동거리의 적정성 평가연구)

  • Lim, Chea-Hyun;Doh, Sang-Hyeun
    • Fire Science and Engineering
    • /
    • v.29 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In Korea, The protective action distance based on Canada's ERG has been adopted for safety of residents in case of hazardous chemicals leakage accident. However, it couldn't respond properly on the accidents because of geographical and meteorological differences between two nations. In this study, It was found that the protective action distance varies depending on season and terrain, Through AERMOD modeling analysis for the petrochemical complex reflected local geographical data and meteorological conditions.