• Title/Summary/Keyword: Embryonic effect

Search Result 389, Processing Time 0.028 seconds

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF

Neuroprotective Effect of Dizocilpine (MK-801) via Anti-apoptosis on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Seo, Min-Ae;Lee, Hyun-Ju;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.17 no.2
    • /
    • pp.181-192
    • /
    • 2010
  • Purpose: Current studies have demonstrated the neuroprotective effects of dizocilpine (MK-801) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether dizocilpine can protect the developing rat brain from HI injury via anti-apoptosis. Methods: In an in vitro model, embryonic cortical neuronal cell culture of Sprague-Dawley (SD) rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with dizocilpine (HD). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$ incubators (94% N2, 5% $CO_2$) for 16 hours. In an in vivo model, left carotid artery ligation was done in 7-day-old SD rat pups. The animals were divided into six groups; hypoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with dizocilpine (HD). Hypoxia was made by exposure to a 2 hour period of hypoxic incubator (92% N2, 8% $O_2$). Results: In the in vitvo and in vivo models, the expressions of Bcl-2 in the hypoxia groups were reduced compared to the normoxia group. whereas those in the dizocilpine-treated group were increased compared to the hypoxia group. However. the expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were revealed reversely. Conclusion: Dizocilpine has neuroprotective property over perinatal HI brain injury via anti-apoptosis.

Activation Mechanism of Protein Kinase B by DNA-dependent Protein Kinase Involved in the DNA Repair System

  • Li, Yuwen;Piao, Longzhen;Yang, Keum-Jin;Shin, Sang-Hee;Shin, Eul-Soon;Park, Kyung-Ah;Byun, Hee-Sun;Won, Min-Ho;Choi, Byung-Lyul;Lee, Hyun-Ji;Kim, Young-Rae;Hong, Jang-Hee;Hur, Gang-Min;Kim, Jeong-Lan;Cho, Jae-Youl;Seok, Jeong-Ho;Park, Jong-Sun
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2008
  • DNA-dependent protein kinase(DNA-PK) is involved in joining DNA double-strand breaks induced by ionizing radiation or V(D)J recombination and is activated by DNA ends and composed of a DNA binding subunit, Ku, and a catalytic subunit, DNA-PKcs. It has been suggested that DNA-PK might be $2^{nd}$ upstream kinase for protein kinase B(PKB). In this report, we showed that Ser473 phosphorylation in the hydrophobic-motif of PKB is blocked in DNA-PK knockout mouse embryonic fibroblast cells(MEFs) following insulin stimulation, while there is no effect on Ser473 phosphorylation in DNA-PK wild type MEF cells. The observation is further confirmed in human glioblastoma cells expressing a mutant form of DNA-PK(M059J) and a wild-type of DNA-PK(M059K), indicating that DNA-PK is indeed important for PKB activation. Furthermore, the treatment of cells with doxorubicin, DNA-damage inducing agent, leads to PKB phosphorylation on Ser473 in control MEF cells while there is no response in DNA-PK knockout MEF cells. Together, these results proposed that DNA-PK has a potential role in insulin signaling as well as DNA-repair signaling pathway.

Effects of Garcinia cambogia Extract on the Adipogenic Differentiation and Lipotoxicity (가르시니아 캄보지아 추출물의 지방세포 분화 및 지방 독성에 미치는 영향)

  • Kang, Eun Sil;Ham, Sun Ah;Hwang, Jung Seok;Lee, Chang-Kwon;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.411-416
    • /
    • 2013
  • This study aimed to examine the mechanisms underlying the effects of Garcinia cambogia extract on the adipogenic differentiation of 3T3-L1 cells and long-chain saturated fatty acid-induced lipotoxicity of HepG2 cells. 3T3-L1 preadipocytes, mouse embryonic fibroblast-adipose like cell line, were treated with MDI solution (0.5 mM IBMX, 1 ${\mu}M$ dexamethasone, 10 ${\mu}g/mL$ insulin) to generate a cellular model of adipocyte differentiation. Using this cellular model, the anti-obesity effect of Garcinia cambogia extract was evaluated. MDI-induced lipid accumulation and expression of adipogenesis-related genes were detected by Oil red O staining, Nile Red staining, and Western blot analysis. Effects Garcinia cambogia extract on palmitate-induced lipotoxicity was also analyzed by MTT assay, LDH release, and DAPI staining in HepG2 cells. Garcinia cambogia extract significantly suppressed the adipogenic differentiation of preadipocytes and intracellular lipid accumulation in the differentiating adipocytes. Garcinia cambogia extract also markedly inhibited the expression of peroxisome proliferator- activated receptor ${\gamma}2$ ($PPAR{\gamma}2$), CCAT/enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), and adipocyte protein aP2 (aP2). In addition, Garcinia cambogia extract significantly attenuated palmitate-induced lipotoxicity in HepG2 cells. Palmitateinduced cellular damage and reactive aldehydes were also significantly reduced in the presence of Garcinia cambogia extract. These findings suggest that the Garcinia cambogia extract inhibits the adipogenic differentiation of 3T3-L1 preadipocytes, probably by regulating the expression of multiple genes associated with adipogenesis such as $PPAR{\gamma}2$, $C/EBP{\alpha}$, aP2, and thereby modulating fatty acid-induced lipotoxicity to reduce cellular injury in hepatocytes.

Effects of FGF on Embryonic Development In Vitro in Hanwoo COCs (한우 난구 복합체의 체외발생에 있어서 FGF(Fibroblast Growth Factor)가 미치는 영향)

  • Choi S.H.;Cho S.R.;Kim H.J.;Choe C.Y.;Han M.H.;Son D.S.;Chung Y.G.;H. Hoshi
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2006
  • It is well known that unidentified factors in sera, hormones and growth factors promote the proliferation of granulosa cells and nuclear maturation of bovine COCs (cumulus oocytes complexes) in vitro. Attempts had been developed the simple composition of culture media and similar system to in vivo conditions has been applied. In the present study, we investigated the effect of FGF (fibroblast growth factor) on in vitro maturation and in vitro development of Hanwoo COCs. When the COCs were matured in HPM 199 (Inst. of Functional peptide, Japan) containing 0.1, 1 and 10 ng/ml FGF for 24 hr, maturation rates to metaphase II ($70.0{\sim}75.0%$) were significantly higher (p<0.05) than that of control group (0 ng/ml FGF, 37.5%). When matured COCs with FGF were cultured in maturation medium after in vitro fertilization, developmental rates to blastocysts were 9.5, 0 and 2.9%, respectively, compared to 25.0% of the control group (p<0.05). When the matured COCs with FGF were cultured in HPM 199 (IFP971, Inst. of Functional peptide, Japan) containing 10% FBS, 0.8% BSA or 0.1% PVA (polyvinyl alcohol), the blastocyst formation rates were 12.4, 12.8 and 8.5%, respectively, while the rates of matured COCs with FGF and cultured with IVMD and IVD (Inst. of Functional peptide, Japan) without serum were 38.4% and 34.8%, respectively (p<0.05). These results suggested that FGF is available for in vitro maturation of bovine COCs and is not suitable for in vitro development, but further investigation would be need for finding the synergistic autocrine/paracrine fashion of other growth factors in early bovine embryo development.

The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition (Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1245-1255
    • /
    • 2017
  • Most cancer cells produce ATP predominantly through glycolysis instead of through mitochondrial oxidative phosphorylation, even in the presence of oxygen. The phenomenon is termed the Warburg effect, or the glycolytic switch, and it is thought to increase the availability of biosynthetic precursors for cell proliferation. EMTs have critical roles in the initiation of the invasion and metastasis of cancer cells. The glycolytic switch and EMT are important for tumor development and progression; however, their correlation with tumor progression is largely unknown. The Snail transcription factor is a major factor involved in EMT. The Snail expression is regulated by distal-less homeobox 2 (Dlx-2), a homeodomain transcription factor that is involved in embryonic and tumor development. The Dlx-2/Snail cascade is involved in Wnt-induced EMTs and the glycolytic switch. This study showed that in response to Wnt signaling, the Dlx-2/Snail cascade induces the expression of PFKFB2, which is a glycolytic enzyme that synthesizes and degrades fructose 2, 6-bisphosphate (F2,6BP). It also showed that PFKFB2 shRNA prevents Wnt-induced EMTs in the breast-tumor cell line MCF-7. The prevention indicated that glycolysis is linked to Wnt-induced EMT. Additionally, this study showed PFKFB2 shRNA suppresses in vivo tumor metastasis and growth. Finally, it showed the PFKFB2 expression is higher in breast, colon and ovarian cancer tissues than in matched normal tissues regardless of the cancers' stages. The results demonstrated that PFKFB2 is an important regulator of EMTs and metastases induced by the Wnt, Dlx-2 and Snail factors.

THE EFFECT OF FGF-MEDIATED FGFR SIGNALING ON THE EARLY MORPHOGENESIS AND MAINTENANCE OF THE CRANIAL SUTURE (FGF-mediated FGFR signaling이 두개봉합부의 초기형태발생 및 유지기전에 미치는 영향)

  • Sue, Kyung-Hwan;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.4
    • /
    • pp.652-663
    • /
    • 1999
  • Craniosynostosis, the premature fusion of cranial sutures, presumably involves disturbance of the interactions between different tissues within the cranial sutures. Interestingly, point mutaions in the genes encoding for the fibroblast growth factor receptors(FGFRs), especially FGFR2, cause various types of human craniosynostosis syndromes. To elucidate the function of these genes in the early morphogenesis of mouse cranial sutures, we first analyzed by in situ hybridization the expression of FGFR2(BEK) and osteopontin, an early marker of osteogenic differentiation, in the sagittal suture of calvaria during embryonic(E15-E18) and postnatal stage(P1-P3). FGFR2(BEK) was intensely expressed in the osteogenic fronts, whose cells undergo differentiation into osteoprogenitor cells that ultimately lay down the bone matrix. Osteopontin was expressed throughout the parietal bones excluding the osteogenic fronts, the periphery of the parietal bones. To further examine the role of FGF-mediated FGFR signaling in cranial suture, we did in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of FGF2 soaked beads onto both the osteogenic fronts and mid-mesenchyme of sagittal suture after 36 hours organ culture resulted in the increase of the tissue thickness and cell number around FGF2 beads, moreover FGF4-soaked beads implanted onto the osteogenic fronts stimulated suture closure due to an accelerated bone growth, compared to FGF4 beads placed onto mid-mesenchyme of sagittal suture and BSA control beads. In addition FGF2 induced the ectopic expression of osteopontin and Msx1 genes. Taken together, these data indicate that FGF-mediated FGFR signaling has a important role in regulating the cranial bone growth and maintenance of cranial suture, and suggest that FGF-mediated FGFR signaling is involved in regulating the balance between the cell proliferation and differentiation through inducing the expression of osteopontin and Msx1 genes.

  • PDF

Studies on In Vitro Culture, Freezing and Transfer of Korean Native Cattle Embryos Fertilized In Vitro I. Effect of Co-culture Cells and Growth Factors on In Vitro Development of Korean Native Cattle Embryos Fertilized In Vitro (한우 체외수정란의 체외배양, 동결보존 및 이식에 관한 연구 I. 한우 체외수정란의 체외배양에 대한 공배양세포와 성장인자의 효과)

  • 김일화;손동수;이호준;최선호;양병철;이광원;김경남;장인호
    • Journal of Embryo Transfer
    • /
    • v.11 no.2
    • /
    • pp.111-124
    • /
    • 1996
  • The present study was carried out to investigate the effects of co-culture cells and growth factors on in vitro culture of Korean native cattle(KNC) embryos fertilized in vitro. Two-eight cell embryos were cultured in vitro using 4 types of co-culture cells and 3 growth factors singly or in combination. The results were as follows, In the co-culture of 2~8 cell embryos with bovine oviductal epithelial cell(BOEC), granulosa cell(BGC), uterine epithelial cell(BUEC) and mouse embryonic fibroblast (MEF) monolayers, the developing rate to blastocysts was significantly(P<0.05) higher with BUEC(32.1%) than with MEF(15.3%), BGC(13.2%) and non co-culture control(11.6%). When the morula co-cultured with BOEC for 5 days following in vitro fertilization were co-cultured with BOEC continuously or with BUEC, respectively, the developing rate to blastocysts was higher with BUEC(73.9%) than with BOEC(56.0%). To examine the effects of growth factors on in vitro development of 2~8 cell embryos, epidermal growth factor(EGF), transforming growth factor-$\beta$l(TGF-$\beta$l) and insulin-like growth factor-1(IGF-1) were added singly or in combination to TCM 199 maturation medium with respective concentration. In a addition of each 10, 30 and SOng /rnl EGF, the developing rate to blastocysts was the highest in lOng /ml EGF(25.3%). In addition of each 1, 2 and Sng /mi TGF-$\beta$1, the developing rate to blastocysts was the highest in lng /ml TGF-$\beta$1(28.8%). In addition of each 50, 100ng/ml JGF-l, the developing rate to blastocysts was higher in 100ng/ml IGF-l(16.5%) than in SOng/mi IGF-1(12.9%). When lOng /ml EGF and lng /ml TGF-$\beta$l was added singly or in combination, the developing rate to blastocysts was similar in groups added singly or in combination with EGF and TGF-$\beta$l (23.l~24.6%), although higher than in control(16.7%). In the co-culture of 2~8 cell embryos Wth BOEC + each 10, 30 and 5Ong /rnl EGF, the developing rate to blastocysts was significantly(p<0.05) higher in BOEC + long /ml EGF(32.3%) than in BOEC + 3Ong /ml EGF(18.9%) and BOEC + song /ml EGF(9.7%). In the co-culture of 2~8 cell embryos with BOEC + each 1, 2, Sng /ml TGF-$\beta$l the developing rate to blastocysts was higher in BOEC + Sng/rnl TGF-$\beta$l(28.2%) than in BOEC + lng /ml TGF-$\beta$l(21.7%) and BOEC + 2ng/ml TGF-$\beta$l(21.4%). In summary, higher developing rate to blastocysts were obtained with co-culture of BUEC for co-culture system, with addition of lOng /ml EGF or lng /ml TGF-$\beta$l for growth factor culture system, and with co-culture of BOEC + lOng /ml EGF or BOEC + Sng /ml TGF-$\beta$l for co-culture + growth factor culture system.

  • PDF

Form and Embryonic Characteristics of Pedicularis hallaisanensis Seeds As Endangered Wild Species II-Class Using Host Plants (숙주식물을 활용한 멸종위기야생식물II급 한라송이풀 종자의 형태 및 발아특성)

  • Kim, Lim-Kyu;Park, Eun-Hee;Gang, GeunHye;Hwang, Boo-Yeong;Jung, Hyun-Jin;Kim, Min-Yong;Park, Jeong-geun;Park, Sam-Bong;Kim, Bong-Gyu;Choo, Gab-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.290-295
    • /
    • 2019
  • This study was carried out to investigate the possibility of establishing a reproductive system for the seed of Pedicularis hallaisanensis, which is in the endangered wild species II class in Korea. The seed of P. hallaisanensis is egg-shaped, and the seed coat is dark brown. The embryo was identified as a dwarf type by the seed section. The seed length was $0.47{\pm}0.07mm$, width $0.16{\pm}0.006mm$, and thickness $0.12{\pm}0.01mm$. The weight of one seed was $0.0003{\pm}0.0001mg$, and 1000 seeds weighed $4.59{\pm}0.02mg$. The degree of seed viability was 75.33% by the tetrazolium (TZ) assay. The highest germination rate of P. hallaisanensis seed was 71% after 4 weeks of storage at $4^{\circ}C$. However, the germination rate tended to decrease gradually over a longer storage period. The germination rates after 6 or 8 weeks of storage at $4^{\circ}C$ were 64% and 60%, respectively. We used two host plants, Artemisia princeps and Dendranthema zawadskii, to determine the effect of host plants on P. hallaisanensis seed germination. The germination of P. hallaisanensis mixed with A. princeps or D. zawadskii started at 53.5 and 62.5 days after sowing, respectively. We did not find any germination 164 days postsowing with both host plants. When A. princeps and D. zawadskii were used as host plants for P. hallaisanensis seed germination, P. hallaisanensis seed germination rates were 45.5% and 19.5%, respectively. The average time to germination was 70.2 days for A. princeps, and 46.8 days for D. zawadskii.