Effects of FGF on Embryonic Development In Vitro in Hanwoo COCs

한우 난구 복합체의 체외발생에 있어서 FGF(Fibroblast Growth Factor)가 미치는 영향

  • Choi S.H. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Cho S.R. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Kim H.J. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Choe C.Y. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Han M.H. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Son D.S. (Animal Genetic Resources Station, NLRI, RDA) ;
  • Chung Y.G. (ET Biotech) ;
  • H. Hoshi (Institute of Functional Peptide)
  • 최선호 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 조상래 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 김현종 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 최창용 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 한만희 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 손동수 (농촌진흥청 축산연구소 가축유전자원시험장) ;
  • 정연길 (이티바이오텍) ;
  • Published : 2006.06.01

Abstract

It is well known that unidentified factors in sera, hormones and growth factors promote the proliferation of granulosa cells and nuclear maturation of bovine COCs (cumulus oocytes complexes) in vitro. Attempts had been developed the simple composition of culture media and similar system to in vivo conditions has been applied. In the present study, we investigated the effect of FGF (fibroblast growth factor) on in vitro maturation and in vitro development of Hanwoo COCs. When the COCs were matured in HPM 199 (Inst. of Functional peptide, Japan) containing 0.1, 1 and 10 ng/ml FGF for 24 hr, maturation rates to metaphase II ($70.0{\sim}75.0%$) were significantly higher (p<0.05) than that of control group (0 ng/ml FGF, 37.5%). When matured COCs with FGF were cultured in maturation medium after in vitro fertilization, developmental rates to blastocysts were 9.5, 0 and 2.9%, respectively, compared to 25.0% of the control group (p<0.05). When the matured COCs with FGF were cultured in HPM 199 (IFP971, Inst. of Functional peptide, Japan) containing 10% FBS, 0.8% BSA or 0.1% PVA (polyvinyl alcohol), the blastocyst formation rates were 12.4, 12.8 and 8.5%, respectively, while the rates of matured COCs with FGF and cultured with IVMD and IVD (Inst. of Functional peptide, Japan) without serum were 38.4% and 34.8%, respectively (p<0.05). These results suggested that FGF is available for in vitro maturation of bovine COCs and is not suitable for in vitro development, but further investigation would be need for finding the synergistic autocrine/paracrine fashion of other growth factors in early bovine embryo development.

소 난포란의 체외 성숙은 과립막 세포, 난자의 핵성숙을 촉진하는 미지의 혈청내의 물질뿐만 아니라, 호르몬이나 생리 활성 인자 등에 의해 촉진됨이 밝혀졌다. 이에 따라 체외 성숙 및 체외 발달에 사용되는 배양액의 조성도 복합 배양액에서 단순 배양액으로 전환을 시도하고 있으며, 체내의 조건에 보다 더 접근하고자 하는 시도들이 수행되고 있다. 본 연구는 한우 난포란의 성숙 시 FGF의 첨가가 체외 성숙율 및 체외 수정 후 배발달율에 미치는 영향에 대하여 조사하였다. 한우 난포란의 체외 성숙시 FGF를 0.1, 1, 10 ng/ml를 첨가하였을 때 24 시간째에 Metaphase II 도달율은 각각 72.7, 70.0, 75.0%로서 무첨가 대조군의 37.5% 에 유의적으로 높은 성숙율을 보였다(p<0.05). 그러나 FGF 첨가 농도간에는 차이가 인정되지 않았다. FGF로 체외 성숙된 난포란의 체외 수정 후 배발달율은 0, 0.1, 1, 10 ng/ml FGF 첨가군에서 각각 25.0, 9.5, 0, 2.9%를 보여, 무첨가 대조군에 비해 FGF 첨가군에서 낮았다(p<0.05). FGF로 체외 성숙된 난포란을 체외 수정 후 10% FBS-HPM 199, 0.8% BSA-HPM 199 및 0.1% PVA-HPM에 배양한 결과 12.4, 12.8, 8.5%의 배반포 발달율을 보였으며, 무혈청 배양액인 IVMD, IVD에 배양한 결과 38.4 및 34.8%의 배반포 발달율로 유의적인 차이를 나타냈다(p<0.05). 결론적으로 FGF는 한우 난포란의 체외 성숙시 유용한 물질이나, 한우 난자의 체외 발달에는 단독의 효과를 기대할 수 없었으며, 다른 생리 활성 인자들 간의 상호 관계에 대하여 더 많은 연구가 요구된다.

Keywords

References

  1. Baird A and Klagsbrun M. 1991. The fibroblast growth factor family. Cancer Cells, 3:239-243
  2. Byun TH, Lee SH and Song HH. 1991. Development of a rapid staining method for nucleus of the oocyte from domestic animal. Korean J. Anim. Sci., 33:25-31
  3. Flood MR, Gage TL and Bunch TD. 1993. Effect of various growth-promoting factors on preimplantation bovine embryo development in vitro. Theriogenology, 39:823-833 https://doi.org/10.1016/0093-691X(93)90421-Z
  4. Heyner S, Shah N, Smith RM, Watson AJ and Schultz GA. 1993. The role of growth factors in embryo production. Theriogenology, 39: 151-161 https://doi.org/10.1016/0093-691X(93)90030-9
  5. Keefer CL, Stice SL, Paprocki AM and Golueke P. 1994. In vitro culture of bovine IVM-IVF embryos: Cooperative interaction among embryos and the role of growth factors. Theriogenology, 41:1323-1331 https://doi.org/10.1016/0093-691X(94)90491-Z
  6. Larson RC, Ignotz GG and Currie WB. 1992. Transforming growth factor-${\beta}$ and basic fibroblast growth factor synergistically promote early bovine embryo development during the fourth cell cycle. Mol. Reprod. Dev., 33:432-435 https://doi.org/10.1002/mrd.1080330409
  7. Marquant-Le Guinne B, Gerard M, Solari A and Thibault C. 1989. In vitro culture of bovine egg fertilized either in vivo or in vitro. Reprod. Nutr. Dev., 29:559-568 https://doi.org/10.1051/rnd:19890505
  8. Monniaux D, Monget P, Besnard N, Huet C and Pisselet C. 1997. Growth factors and antral follicular development in domestic ruminants. Theriogenology, 47:3-12 https://doi.org/10.1016/S0093-691X(96)00334-2
  9. Nelson KG, Takahashi T, Lee DC, Luetteke NC, Bossert NL, Ross K, Eitzman BE . and McLachlan JA. 1992. Transforming growth factor-${\alpha}$ is a potent mediator of estrogen action in the mouse uterus. Endocrinology, 131:1657-1664 https://doi.org/10.1210/en.131.4.1657
  10. Paria BC and Dey SK. 1990. Preimplantation embryo development in vitro: Cooperative interaction among embryos and role of growth factors. Proc. Natl. Acad. Sci. USA 87:4756-4760
  11. Philip GK and Claire G. 2003. Local roles of TGF-${\beta}$ superfamily members in the control of ovarian follicle development. Anim. Reprod. Sci., 78: 165-183 https://doi.org/10.1016/S0378-4320(03)00089-7
  12. Skinner MK and Coffey RJ. 1988. Regulation of ovarian cell growth through the local production of transforming growth factor-${\alpha}$ by thecal cell. Endocrinology, 123:2632-2638 https://doi.org/10.1210/endo-123-6-2632
  13. Sordoillet C, Savona C, Chauvin MA, dePeretti E, Feige JJ, Morera AM and Benahmed M. 1992. Basic fibroblast growth factor enhances testosterone secretion in cultured porcine Leydig cells: site(s) of action. Mol. Cell Endocrinol., 89:163-171 https://doi.org/10.1016/0303-7207(92)90222-R
  14. Tamada H, Das SK, Andrew GK and Dey SK. 1991. Cell-type-specific expression of transforming growth factor-${\alpha}$ in the mouse uterus during the peri-implantation period. Biol. Reprod., 45:365-372 https://doi.org/10.1095/biolreprod45.2.365
  15. Vaughan TJ, James PS, Pascall JC and Brown KD. 1992. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo. Mol. Reprod. Dev., 31:87-95 https://doi.org/10.1002/mrd.1080310202
  16. Werb Z. 1990. Expression of EGF and TGF-${\alpha}$ genes in early mammalian development. Mol. Reprod. Dev., 27:10-15 https://doi.org/10.1002/mrd.1080270105
  17. Yamashita S, Abe H, Itoh T, Satoh T and Hoshi H. 1999. A serum-free culture system for efficient in vitro production of bovine blastocysts with improved viability after freezing and thawing. Cytotechnology, 31:1-9 https://doi.org/10.1023/A:1008198829774