DOI QR코드

DOI QR Code

Neuroprotective Effect of Dizocilpine (MK-801) via Anti-apoptosis on Hypoxic-ischemic Brain Injury in Neonatal Rats

  • Seo, Min-Ae (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Lee, Hyun-Ju (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Choi, Eun-Jin (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Jin-Kyung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Chung, Hai-Lee (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Kim, Woo-Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • Published : 2010.11.30

Abstract

Purpose: Current studies have demonstrated the neuroprotective effects of dizocilpine (MK-801) in many animal models of brain injury, including hypoxic-ischemic (HI) encephlopathy, trauma and excitotoxicity, but limited data are available for those during the neonatal periods. Here we investigated whether dizocilpine can protect the developing rat brain from HI injury via anti-apoptosis. Methods: In an in vitro model, embryonic cortical neuronal cell culture of Sprague-Dawley (SD) rats at 18-day gestation was done. The cultured cells were divided into three groups: normoxia (N), hypoxia (H), and hypoxia treated with dizocilpine (HD). The N group was prepared in 5% $CO_2$ incubators and the other groups were placed in 1% $O_2$ incubators (94% N2, 5% $CO_2$) for 16 hours. In an in vivo model, left carotid artery ligation was done in 7-day-old SD rat pups. The animals were divided into six groups; hypoxia (N), hypoxia (H), hypoxia with sham-operation (HS), hypoxia with operation (HO), HO treated with vehicle (HV), and HO treated with dizocilpine (HD). Hypoxia was made by exposure to a 2 hour period of hypoxic incubator (92% N2, 8% $O_2$). Results: In the in vitvo and in vivo models, the expressions of Bcl-2 in the hypoxia groups were reduced compared to the normoxia group. whereas those in the dizocilpine-treated group were increased compared to the hypoxia group. However. the expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were revealed reversely. Conclusion: Dizocilpine has neuroprotective property over perinatal HI brain injury via anti-apoptosis.

목적: 비경쟁적 NMDA 길항제인 dizocilpine (MK-801)는 저산소성 허혈성 뇌병증, 외상성 뇌손상, 흥분독성과 같은 신경 질환의 동물 모델에서 보호 효과가 있다고 발표되고 있지만 주산기 가사로 인한 저산소성 허혈성 뇌병증의 치료제로서 그 기전이 명확하게 밝혀지지 않았다. 저자들은 dizocilpine을 이용하여 주산기 저산소성 허혈성 뇌병증의 치료제로서 항 세포사멸사을 통한 기전을 알아보고자 하였다. 방법: 생체외 실험으로 재태기간 19일된 태아 흰쥐의 대뇌피질 세포를 배양하여 3군(정상산소군, 저산소군, 뇌손상 전dizocilpine 투여군)으로 나누었다. 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 뇌손상 전 dizocilpine 투여군($10{\mu}g/mL$)은 1% $O_2$ 배양기(94% $N_2$, 5% CO2)에서 16시간 동안 뇌세포손상을 유도하였다. 생체내 실험으로 저산소성 허혈성 뇌병증의 동물 모델에서는 생후 7일된 신생백서의 좌측 총 경동맥을 결찰한 후 6개 군(정상산소군, 수술 없이 저산소군, sham 수술 후 저산소군, 수술 후 저산소군, vehicle 투여후 저산소군, dizocilpine 투여 후 저산소군)으로 나누었고, 저산소 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$에 노출시켰다. Dizocilpine은 뇌손상 전후 30분에 체중 kg당 10 mg를 투여하였고, 저산소 손상 후 7일째 조직을 실험하였다. 생체외 내 실험 모두 세포사멸사와 관련된 Bcl-2, Bax, caspase-3항체와 primer를 이용하여 western blots과 실시간 중합효소연쇄반응을 실시하였다. 결과: 세포사멸사와 관련된 생체외 내 실험에서 Bcl-2의 발현은 저산소군에서 정상산소군보다 감소하였으나 dizocilpine 투여군에서 저산소군보다 증가하였다. 그러나 Bax와 caspase-3 발현 및 Bax/Bcl-2의 비는 반대로 표현되었다. 결론: 본 연구에서 dizocilpine은 항 세포사멸사를 통하여 주산기 저산소성 허혈성 뇌손상에서 신경보호 역할을 하는 것을 알 수 있었다.

Keywords

References

  1. Amir G, Ramamoorthy C, Riemer RK, Reddy VM, Hanley FL. Neonatal brain protection and deep hypothermic circulatory arrest: pathophysiology of ischemic neuronal injury and protective strategies. Ann Thorac Surg 2005;80:1955-64. https://doi.org/10.1016/j.athoracsur.2004.12.040
  2. Choi DW. Cerebral hypoxia: some new approaches and unanswered questions. J Neurosci 1990;10:2493-501.
  3. Garthwaite J, Boulton CL. Nitric oxide signaling in the central nervous system. Annu Rev Physiol 1995;57:683-706. https://doi.org/10.1146/annurev.ph.57.030195.003343
  4. Marini AM, Rabin SJ, Lipsky RH, Mocchetti I. Activity-dependent release of brain-derived neurotrophic factor underlies the neuroprotective effect of N-methyl-D-aspartate. J Biol Chem 1998;273: 29394-9. https://doi.org/10.1074/jbc.273.45.29394
  5. Mukhin AG, Ivanova SA, Knoblach SM, Faden AI. New in vitro model of traumatic neuronal injury: evaluation of secondary injury and glutamate receptor-mediated neurotoxicity. J Neurotrauma 1997;14:651-63. https://doi.org/10.1089/neu.1997.14.651
  6. Ayala GX, Tapia R. Late N-methyl-D-aspartate receptor blockade rescues hippocampal neurons from excitotoxic stress and death after 4-aminopyridine-induced epilepsy. Eur J Neurosci 2005;22:3067- 76. https://doi.org/10.1111/j.1460-9568.2005.04509.x
  7. Kocaeli H, Korfali E, Oztürk H, Kahveci N, Yilmazlar S. MK-801 improves neurological and histological outcomes after spinal cord ischemia induced by transient aortic cross-clipping in rats. Surg Neurol 2005;64 Suppl 2:S22-6; discussion S27.
  8. Ford LM, Sanberg PR, Norman AB, Fogelson MH. MK-801 prevents hippocampal neurodegeneration in neonatal hypoxicischemic rats. Arch Neurol 1989;46:1090-6. https://doi.org/10.1001/archneur.1989.00520460072016
  9. Han RZ, Hu JJ, Weng YC, Li DF, Huang Y. NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 2009;25:367-75. https://doi.org/10.1007/s12264-009-0608-x
  10. Jantas D, Lason W. Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect. Neurochem Res 2009;34:2040-54. https://doi.org/10.1007/s11064-009-9991-y
  11. Lam TT, Siew E, Chu R, Tso MO. Ameliorative effect of MK-801 on retinal ischemia. J Ocul Pharmacol Ther 1997;13:129-37. https://doi.org/10.1089/jop.1997.13.129
  12. Lam TT, Abler AS, Kwong JM, Tso MO. N-methyl-D-aspartate (NMDA)--induced apoptosis in rat retina. Invest Ophthalmol Vis Sci 1999;40:2391-7.
  13. Zhang X, Boulton AA, Zuo DM, Yu PH. MK-801 induces apoptotic neuronal death in the rat retrosplenial cortex: prevention by cycloheximide and R(-)-2-hexyl-N-methylpropargylamine. J Neurosci Res 1996;46:82-9. https://doi.org/10.1002/(SICI)1097-4547(19961001)46:1<82::AID-JNR10>3.0.CO;2-E
  14. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Methods 1997;71:143-55. https://doi.org/10.1016/S0165-0270(96)00136-7
  15. Vannucci RC, Vannucci SJ. A model of perinatal hypoxic-ischemic brain damage. Ann N Y Acad Sci 1997;835:234-49. https://doi.org/10.1111/j.1749-6632.1997.tb48634.x
  16. Feng Y, Fratkins JD, LeBlanc MH. Treatment with tamoxifen reduces hypoxic-ischemic brain injury in neonatal rats. Eur J Pharmacol 2004;484:65-74. https://doi.org/10.1016/j.ejphar.2003.10.048
  17. Greenwood K, Cox P, Mehmet H, Penrice J, Amess PN, Cady EB, et al. Magnesium sulfate treatment after transient hypoxia-ischemia in the newborn piglet does not protect against cerebral damage. Pediatr Res 2000;48:346-50. https://doi.org/10.1203/00006450-200009000-00014
  18. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res 1999;55:158-63. https://doi.org/10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>3.0.CO;2-1
  19. MacDonald HM, Mulligan JC, Allen AC, Taylor PM. Neonatal asphyxia. I. Relationship of obstetric and neonatal complications to neonatal mortality in 38,405 consecutive deliveries. J Pediatr 1980;96:898-902. https://doi.org/10.1016/S0022-3476(80)80574-9
  20. Delivoria-Papadopoulos M, Mishra OP. Mechanisms of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 1998;132:S30-4. https://doi.org/10.1016/S0022-3476(98)70525-6
  21. Weitzdoerfer R, Pollak A, Lubec B. Perinatal asphyxia in the rat has lifelong effects on morphology, cognitive functions, and behavior. Semin Perinatol 2004;28:249-56. https://doi.org/10.1053/j.semperi.2004.08.001
  22. Chan PH. Mitochondrial dysfunction and oxidative stress as determinants of cell death/survival in stroke. Ann N Y Acad Sci 2005;1042:203-9. https://doi.org/10.1196/annals.1338.022
  23. Zipfel GJ, Babcock DJ, Lee JM, Choi DW. Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 2000;17:857-69. https://doi.org/10.1089/neu.2000.17.857
  24. Clawson TF, Vannucci SJ, Wang GM, Seaman LB, Yang XL, Lee WH. Hypoxia-ischemia-induced apoptotic cell death correlates with IGF-I mRNA decrease in neonatal rat brain. Biol Signals Recept 1999;8:281-93. https://doi.org/10.1159/000014599
  25. Bågenholm R, Nilsson UA, Götborg CW, Kjellmer I. Free radicals are formed in the brain of fetal sheep during reperfusion after cerebral ischemia. Pediatr Res 1998;43:271-5.
  26. Giulian D, Vaca K. Inflammatory glia mediate delayed neuronal damage after ischemia in the central nervous system. Stroke 1993;24(12 Suppl):I84-90.
  27. Graham EM, Sheldon RA, Flock DL, Ferriero DM, Martin LJ, O'Riordan DP, et al. Neonatal mice lacking functional Fas death receptors are resistant to hypoxic-ischemic brain injury. Neurobiol Dis 2004;17:89-98. https://doi.org/10.1016/j.nbd.2004.05.007
  28. Allan SM, Rothwell NJ. Inflammation in central nervous system injury. Philos Trans R Soc Lond B Biol Sci 2003;358:1669-77. https://doi.org/10.1098/rstb.2003.1358
  29. Huang SS, Tsai MC, Chih CL, Hung LM, Tsai SK. Resveratrol reduction of infarct size in Long-Evans rats subjected to focal cerebral ischemia. Life Sci 2001;69:1057-65. https://doi.org/10.1016/S0024-3205(01)01195-X
  30. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr 2001;13:506-16. https://doi.org/10.1097/00008480-200112000-00003
  31. Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol 2000;17:113-20. https://doi.org/10.1055/s-2000-9293
  32. Towfighi J, Mauger D, Vannucci RC, Vannucci SJ. Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxiaischemia: a light microscopic study. Brain Res Dev Brain Res 1997; 100:149-60. https://doi.org/10.1016/S0165-3806(97)00036-9
  33. Wyllie AH. Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 1992; 11:95-103. https://doi.org/10.1007/BF00048057
  34. Gerschenson LE, Rotello RJ. Apoptosis: a different type of cell death. FASEB J 1992;6:2450-5. https://doi.org/10.1096/fasebj.6.7.1563596
  35. Johnson EM Jr, Deckwerth TL. Molecular mechanisms of developmental neuronal death. Annu Rev Neurosci 1993;16:31-46. https://doi.org/10.1146/annurev.ne.16.030193.000335
  36. Dong JW, Zhu HF, Zhu WZ, Ding HL, Ma TM, Zhou ZN. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Res 2003;13:385-91. https://doi.org/10.1038/sj.cr.7290184
  37. Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ. Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 1997;139:1281-92. https://doi.org/10.1083/jcb.139.5.1281
  38. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312-6. https://doi.org/10.1126/science.281.5381.1312
  39. Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 1999;6:99-104. https://doi.org/10.1038/sj.cdd.4400476
  40. Qin ZH, Wang Y, Chase TN. Stimulation of N-methyl-D-aspartate receptors induces apoptosis in rat brain. Brain Res 1996;725:166-76.

Cited by

  1. Effects of Dizocilpine (MK-801) via Up-modulation of N-methyl-D-aspartate (NMDA) Receptors on Hypoxic-Ischemic Brain Injury in Neonatal Rats vol.25, pp.3, 2010, https://doi.org/10.14734/kjp.2014.25.3.166