• Title/Summary/Keyword: Embryogenesis

Search Result 555, Processing Time 0.037 seconds

The change of somatic cell embryogenesis in Kalanchoe pinnata because of agar concentration in stimulating root stress (뿌리 스트레스를 유발하는 agar농도에 따른 Kalanchoe pinnata의 체세포 배 형성 변화)

  • Park, Jongbum;Kim, Jin-Seok;Kim, Donggiun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.3
    • /
    • pp.320-324
    • /
    • 2017
  • Development of modern agricultural machinery and accompanying agricultural development cause soil compaction and reduce growth by stressing roots. Kalanchoe pinnata was used to investigate the impact of stress on rooting and changes in plant growth and reproduction. K. pinnata forms somatic embryos capable of asexual reproduction at the edge of leaves. Impact of root pressurization of K. pinnata on somatic embryogenesis and organ differentiation according to external stress factors was investigated by using a high concentration of agar and this phenomenon was studied histologically. Agar concentration in culture media ranged from 0.5%-1.5% to induce a compression effect on roots. The stem and leaf of K. pinnata were subjected to a microtechnique process to study changes in tissue. In vivo, K. pinnata produced 2nd and 3rd plantlets at edges of leaves from lack of water and excessive lighting conditions. In in vitro culture studies, the lower the concentration of agar, the higher the population and the higher the biomass, but plantlet did not occur in leaf bends. Conversely, as concentration of agar increased, increase in the number of individuals was low. Plantlet development occurred only in agar 1.5% medium. The difference in agar concentration was a stressor in the root of K. pinnata, and thus the pattern of asexual reproduction changed from the division method in root to a plantlet generation in leaf. This suggests root pressurization may act as stress and change in the plant reproduction pattern.

Effect of Bisphenol A on Early Embryonic Development and the Expression of Glutathione S-transferase (GST) in the Sea Urchin (Hemicentrotus pulcherrimus) (말똥성게(Hemicentrotus pulcherrimus)의 초기배아 발생과 glutathione S-transferase (GST)의 발현에 대한 bisphenol A의 영향)

  • Hwang, Un-Ki;Kim, Dae-Han;Ryu, Hyang-Mi;Lee, Ju-Wook;Park, Seung-Yoon;Kang, Han Seung
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.3
    • /
    • pp.234-242
    • /
    • 2014
  • In this study, gametotoxicity and embryotoxicity experiments using Hemicentrotus pulcherrimus were carried out to investigate the ecotoxicological effects of bisphenol A (BPA). We examined the effects of BPA on fertilization and normal embryogenesis at various concentrations (0, 300, 500, 800, 1000, and 1500 ppb). The results demonstrated that the fertilization rates were not changed. The normal embryogenesis rates were gradually decreased in a dose-dependent manner, and were significantly lowered following 800 ppb BPA treatment ($EC_{50}$=1056.1 ppb, 95% Cl=981.8~1163.9 ppb). The observed effective concentration and the lowest observed effective concentration of the normal embryogenesis rate were 500 ppb and 800 ppb, respectively. The embryos showed retarded development at each tested concentration, indicating the fact the embryonic development was delayed due to the increasing concentrations of BPA. Furthermore, we examined the expression of glutathione S-transferase (GST) mRNA at various concentrations of BPA in H. pulcherrimus. Interestingly, it was found that the expression level of GST mRNA was significantly increased in the experimental group exposed to BPA. Based on these results, we suggested that BPA at greater than 800 ppb has a toxic effect during the early embryonic stages of H. pulcherrimus, and GST mRNA may be used as a biomarker for risk assessment of BPA contamination.

Plant Regeneration by in vitro Tissue Culture in Korean Soybean (Glycine max L.) (기내 배양을 통한 국내 콩(Glycine max L.) 품종의 식물체 재분화)

  • Kim, Dong-Gun;Kantayos, Vipada;Kim, Dong-Kwan;Park, Heung-Gyu;Kim, Haeng-Hoon;Rha, Eui-Shik;Lee, Sheong Chun;Bae, Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.29 no.1
    • /
    • pp.143-153
    • /
    • 2016
  • Plant regeneration via organogenesis and somatic embryogenesis was investigated in Korean soybean cultivars including Cheongja 3, Jinpumkong 2, Taekwangkong and Uram. Cotyledon, cotyledon+hypocotyl and hypocotyl segments of 7-day-old seedlings were cultured on MS medium containing various concentration (0, 1, 2 and 4 ㎎/L) of BA and TDZ. The results showed that MS medium supplemented with BA 2.0 ㎎/L yielded the highest shoot formation ratio of 83.3%. In 4 cultivars, Taekwangkong showed the highest ratio of shoot formation. When various sizes of immature cotyledons (S: 1∼ 2 ㎜, M: 3∼5 ㎜, L: 6∼8 ㎜) were tested on MS medium containing 2,4-D 40 ㎎/L for somatic embryogenesis, the optimum size for embryogenic callus induction was 3∼5 ㎜ in length of immature cotyledons. In 4 cultivars, Taekwangkong showed the highest percentage of embryogenic callus induction. The results indicate that Taekwangkong is the best soybean cultivar for plant regeneration via organogenesis and embryogenic callus induction among the 4 cultivars.

Effects of Growth Regulators and Explants on Direct Somatic Embryogenesis in Liquid Culture of Rehmannia glutinosa (지황의 액체배양에서 식물생장조정제와 치상 조직이 직접 체세포배 형성에 미치는 영향)

  • Park, Ju-Hyun;Chae, Young-Am
    • Korean Journal of Medicinal Crop Science
    • /
    • v.5 no.4
    • /
    • pp.289-293
    • /
    • 1997
  • The effects of plant regulators on direct somatic embryogenesis in liquid culture of Rehmannia glutinosa were investigated and the proper explant for direct somatic embryo formation was studied. Direct somatic embryos were induced from leaf segments culture in the MS liquid medium containing 0.5 mg/l of both IAA and NAA, while IBA of 1.0 mg/l was required for the same effect. Many somatic embryos were directly formed at the concentration of 2.0 mg/l cytokinin such as BA, kinetin and zeatin, but somatic embryogenesis was relatively poor at above or below this level. Relatively more somatic embryos were induced in the combination of 1.0mg/l IAA and 2.0mg/l zeatin. Formation of somatic embryos begun after 6 weeks on stem segments, while 7 weeks both on petiole and leaf. However, overall production of somatic embryos after 8 weeks was higher in leaf segment than that of stem segment.

  • PDF

Somatic embryogenesis and plant regeneration of Hovenia dulcis Thunb (헛개나무의 체세포배발생 및 식물체 재분화)

  • Eom, Seung-Hee;Shin, Dong-Yong;Lee, Hyeon-Yong;Kim, Myong-Jo;Kim, Jong-Dai;Choi, Won-Cheol;Heo, Kwon;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • An efficient and reproducible procedure for the large scale propagation of Hovenia dulcis Thunb. is described. Shoot primodia emerging from the leaf surface was induced from MS medium supplemented with NAA. Stem cuttings were suitable explants for multiple shoot proliferation. They produced axillary shoots which branched repeatedly, yielding an average of 7 shoots per explants after 4 weeks in culture, when cultured on a woody plant medium (WPM) containing 0.1mg/l BA and 0.1mg/l NAA. Stem, leaf and root segments from axenic seedlings were used as explant source to induce somatic embryogenesis. A high frequency of somatic embryos were induced directly from leaf in MS medium with NAA, 2,4-D and in medium containing NAA, 2,4-D with BA. Somatic embryos were germinated in MS medium supplemented with 1mg/ l $GA_3$. Somatic embryos proliferated secondary somatic embryos rapidly after transfer to MS medium supplemented with 1mg/ l kinetin, 1mg/ l $GA_3$ and 2% dextrose.

Plant Regeneration of Hybrid Poplars Through Nodule Culture System (Nodule 배양방법(培養方法)을 이용(利用)한 잡종(雜種)포플러의 식물체(植物體) 재분화(再分化))

  • Chung, Kyung Ho;Chun, Young Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.1
    • /
    • pp.1-8
    • /
    • 1991
  • Developmental micropropagation method and somatic embryogenesis for hybrid poplars, Populns ehrarnericana Eco28, P. nigra ${\times}$ P. moximowiczii 62-9, were established using nodule culture system. Calli of Eco28 and 62-9 clone were initiated from leaf explant on the medium with 0.5mg/l and 2.0mg/l 2, 4-D, respectively. Cell suspension culture was established from callus derived from leaf explant culture. When suspended on MS medium with optimal combination of BA and NAA fine nodules were obtained after 2 weeks of culture. For shoot regeneration, nodules were transferred into liquid and agar solidified medium. Numerous shoots were regenerated from nodules of 62-9 on liquid media. Organogenesis was effectively achieved on agar solidified regeneration media containing different concentrations of BA and adenine sulfate. Average numbers of 27 and 24 shoots per nodule were induced from 62-1 and Eco28 clones after 8 weeks of culture, respectively. In addition, somatic embryogenesis also occurred in the same regeneration medium. This procedure can be applied to vegetative propagation, utilization of somaclonal variation, production of secondary metabolite and materials of biotechnology research.

  • PDF

Studies on the Embryonic Development of the Oriental Tobacco Budworm, Heliothis assulta Guenee(Lepidoptera: Noctuidae) (담배나방의 배자발생(胚子發生)에 관한 연구)

  • Park, Kye-Chung;Boo, Kyung-Saeng
    • Korean journal of applied entomology
    • /
    • v.24 no.3 s.64
    • /
    • pp.141-149
    • /
    • 1985
  • Embryonic developmental rates of the Oriental tobacco budworm, Heliothis assulta Guenee, were compared at various constant temperatures and 16 hours of light, and detailed embryogenesis was also studied at $25^{\circ}C$. The egg was nearly globular in form and had an average equatorial diameter of 0.53mm. A single micropyle was in the center of the circular area at the anterior pole of the egg. Durations of embryogenesis at 20, 25, 30, and $35^{\circ}C$ were 147, 81, 61, and 67hrs, respectively. Embryonic death was especially higher at $35^{\circ}C$ than any other temperatures investigated. Embryogenesis progressed with changes in color and pattern, which are quite characteristic at each developmental stage of the embryo. At $25^{\circ}C$, organogenesis began in 14hrs after oviposition, formation of gut completed in 44hrs and eclosion occurred in 80hrs. The embryo formed along the long axis at early developmental stage, moved towards the equatorial plane in 24hrs, and made a half-turn on the plane in 36hrs. In 40hrs, head was oriented to the anterior pole of the egg until eclosion.

  • PDF

Effect of Plant Growth Regulators on Direct Shoots Formation and Somatic Embryogenesis from Leaf Tissue Culture of Muscari armeniacum 'Early Giant' (무스카리(Muscari armeniacum 'Early Giant') 엽절편 조직으로부터 신초형성과 체세포 배발생에 미치는 생장조절물질의 영향)

  • Jeon, Su-Min;Chung, Mi-Young;Lee, Hyang-Bun;Han, Jeung-Sul;Park, Jae Suk;Kim, Chang-Kil;Chung, Jae-Dong
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.4
    • /
    • pp.261-265
    • /
    • 2010
  • This experiment was carried out in order to determine proper plant growth regulators (PGR) and their concentrations for direct shoot induction and somatic embryogenesis from leaf tissue cultures of Muscari armeniacum 'Early Giant'. Direct shoot formation from the leaf explant culture was effective only on a half-strength MS medium containing $0.1mg{\cdot}L^{-1}$ 2,4-D, while embryogenesis was occurred on a half-strength MS medium containing $0.1{\sim}1.0mg{\cdot}L^{-1}$ IPA or without PGR. The regenerated bulblets derived from embryos or shoots were harvested and transplanted into a greenhouse. The sprouting percentage of bulblets obtained from different culture media ranged from 80 to 100% and growth of quality bulblets was enhanced when the bulblets were harvested from the medium containing $0.1mg{\cdot}L^{-1}$ NAA and $1.0{\sim}3.0mg{\cdot}L^{-1}$ IPA.

Ecotoxicity Evaluation of PFCs using Marine Invertebrate, Sea Urchin (Mesocentrotus nudus) (둥근성게(Mesocentrotus nudus)를 이용한 과불화화합물의 생태독성평가)

  • Choi, Hoon;Lee, Ju-Wook;Lee, Seung-Min;Jeon, Hyung-Ju;Heo, Seung;Hwang, Un-Ki
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.80-87
    • /
    • 2021
  • In this study, the toxic effects of PFOA and PFOS potassium salt on Mesocentrotus nudus using 10 min-fertilization rate and 48 h-normal embryogenesis were confirmed through the calculation of toxicity values such as Non-observed effective concentration, Low-observed effective concentration, and 50% of effective concentration. The case of 10 min-fertilization rate and 48 h-normal embryogenesis showed the concentration-dependent reduction pattern when exposed to PFOA and PFOS potassium salt, in tested concentration, respectively. The EC50 values of 10 min-fertilization rates for PFOA and PFOS potassium salt were 1346.43 mg/l and 536.18 mg/l, respectively, and the EC50 values of 48 h-normal embryogenesis were 42.67 mg/l and 17.81 mg/l, respectively. Both toxicity test methods showed high toxicity sensitivity to PFOS potassium salt. Recent studies have shown that the concentration of PFOA and PFOS in the marine environment has continuously decreased, and it is not enough to show acute toxicity to sea urchin. However, PFOA and PFOS have a very long half-life and can accumulate throughout the life of marine life, so it is still observed at a high concentration in shellfish. Therefore, a study on chronic toxicity through the whole-life cycle of marine organisms in coastal environments should be needed.

Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis

  • HYUN‑KYUNG LEE;TAYABA ISMAIL;CHOWON KIM;YOUNI KIM;JEEN‑WOO PARK;OH‑SHIN KWON;BEOM‑SIK KANG;DONG‑SEOK LEE;TAEJOON KWON;TAE JOO PARK;HYUN‑SHIK LEE
    • International Journal of Molecular Medicine
    • /
    • v.43 no.2
    • /
    • pp.1105-1113
    • /
    • 2019
  • Epigenetic modifier lysine demethylase 3a (Kdm3a) specifically demethylates mono- and di-methylated ninth lysine of histone 3 and belongs to the Jumonji domain-containing group of demethylases. Kdm3a serves roles during various biological and pathophysiological processes, including spermatogenesis and metabolism, determination of sex, androgen receptor-mediated transcription and embryonic carcinoma cell differentiation. In the present study, physiological functions of Kdm3a were evaluated during embryogenesis of Xenopus laevis. Spatiotemporal expression pattern indicated that kdm3a exhibited its expression from early embryonic stages until tadpole stage, however considerable increase of kdm3a expression was observed during the neurula stage of Xenopus development. Depleting kdm3a using kdm3a antisense morpholino oligonucleotides induced anomalies, including head deformities, small-sized eyes and abnormal pigmentation. Whole-mount in situ hybridization results demonstrated that kdm3a knockdown was associated with defects in neural crest migration. Further, quantitative polymerase chain reaction revealed abnormal expression of neural markers in kdm3a morphants. RNA sequencing of kdm3a morphants indicated that kdm3a was implicated in mesoderm formation, cell adhesion and metabolic processes of embryonic development. In conclusion, the results of the present study indicated that Kdm3a may serve a role in neural development during Xenopus embryogenesis and may be targeted for treatment of developmental disorders. Further investigation is required to elucidate the molecular mechanism underlying the regulation of neural development by Kdm3a.