• Title/Summary/Keyword: Embryo source

Search Result 86, Processing Time 0.022 seconds

Low temperature preservation of bovine ovaries on in vitro development of oocytes (소 난소 저온 보존이 난자의 체외 발달에 미치는 영향)

  • Kim, Sung Woo;Kim, Min Su;Kim, Chan-Lan;Kim, Dongkyo;Kim, Namtae;Seong, Hwan-Hoo
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • During the ovary preservation in low temperature, the cumulus oocyte complexes(COCs) lose their developmental competences after in vitro fertilization. We used phosphate-buffered saline (PBS) as a basic solutions of at various temperatures (25, 15 or $5^{\circ}C$) and supplemented them with 1mM glucose and 0.5mM glutamine as a source of carbohydrate metabolites. After recovery of COCs and in vitro fertilization, a significantly higher number of oocytes developed into blastocysts. The developmental competence of embryos that were originated from ovaries preserved at $15^{\circ}C$ was increased compared to those of 25 or $5^{\circ}C$. The maturation rate of oocytes was not differed between 24 and 36 h at $15^{\circ}C$ but showed lower than control group (71% versus 78%). In vitro-fertilized oocytes from ovaries stored at $25^{\circ}C$ for 24 h or at $5^{\circ}C$ for 24 h had a significantly decreased developmental potentials, but at $15^{\circ}C$ did not (27% versus 29% of blastocysts to develop into day 8). With these results, bovine ovaries can be preserved at $15^{\circ}C$ for 36 h without decreasing developmental capacity of in vitro-fertilized oocyte at least to the blastocyst stage. This information provides valuable information of preserving ovaries for embryo transfer or in vitro embryo production.

Effect of Mature Human Follicular Fluid on the Development of Mouse Embryos in vitro (성숙난포액을 이용한 생쥐배아의 발달에 관한 연구)

  • Park, S.Y.;Lee, J.J.;Kim, S.H.;Ku, P.S.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.19 no.2
    • /
    • pp.125-131
    • /
    • 1992
  • The possible effect of human follicular fluid(hFF) on the growth and development of fertilized oocytes and embryos is important because the fallopian tubes are exposed to FF after follicular rupture and the processes of fertilization and embryo cleavage occur inside the fallopian tubes. Previously, it was suggested that human FF might adversely affect on the development of early mouse embryos. In order to investigate the effect of hFF on the development of embryos, early mouse embryos were cultured in media containing various protein sources as bovine serum albumin(BSA), fetal cord serum(FCS) and FF. And we evaluated the development of early mouse embryos in terms of the morphology, cleavage rate, and cell count of blastcysts. There were no significant differences in the morula and blstocyst formation rates of 2-cell mouse embryos cultured in the media containg three different protein sources and three different concentrations of FF. The blastocyst formation rate of 1-cell mouse embryo cultured in FF group was significantly higher than that cultured in BSA group(P<0.05). The morula and blastocyst formation rates of 2-cell mouse embryos of the group cultured in the media containing FF were comparable with those of other two groups, in addition, the cell count of blastocysts of FF group in the 2-cell embryo culture was higher than those of BSA group and HCS group(P<0.01), and this finding was also noted in 1-cell embryo culture. There was no difference in the morula and blastocyst formation rates of the 2-cell mouse embryos cultured in the media containing different concentrations of FF. These results suggest that mature human follicular fluid has no inhibitory activity on the development of early mouse embryos even in high concentration and may be a good protein source which is positively associated with the development of mouse embryos in vitro especially in 1 cell embryo culture.

  • PDF

The effect of embryo catheter loading technique on the live birth rate

  • Omidi, Marjan;Halvaei, Iman;Mangoli, Esmat;Khalili, Mohammad Ali;Razi, Mohammad Hossein
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.42 no.4
    • /
    • pp.175-180
    • /
    • 2015
  • Objective: Embryo loading (EL) is a major step in embryo transfer (ET) and affect on the success of in vitro fertilization (IVF). This study aimed to compare the effect of two different EL techniques on the rates of pregnancy and delivery in IVF/ET cycles. Methods: 207 fresh ET and 194 Frozen-thawed ET (FET) cycles were included in this retrospective study. Two groups (A and B) were defined based on the EL technique used. In group A, the entire catheter was flushed with Ham's F-10 medium. The embryos were then drawn into the catheter using one air bracket. In group B, $70{\mu}L$ of air was aspirated into the syringe and the catheter was flushed using Ham's F10 medium. The medium, air, embryos, air, and finally another layer of medium were then sequentially drawn into the catheter. The main outcome measures were the pregnancy and delivery rates. Results: The groups did not differ with respect to the etiology of infertility, the source of spermatozoa, the quality of the embryos, the type of EL catheter, and the ease of transfer. The pregnancy rate was similar between two groups. In fresh ET cycles, a higher delivery rate was observed in group B than it group A (78.1% vs. 60%, p=0.1). In FET cycles, the rate of delivery was significantly higher in group B than in group A to a nonsignificant extent (88.9% vs. 58.8%, p=0.06). Conclusion: EL techniques did not have a significant impact on the delivery rate in either fresh or FET cycles.

In Vitro Development and the Improving Effects of Bovine Embryos in Simple Media (소 초기배의 단순배양액에서의 체외발생 및 개선효과)

  • 이홍준;서승운;이상호;송해범
    • Journal of Embryo Transfer
    • /
    • v.10 no.3
    • /
    • pp.251-256
    • /
    • 1995
  • This study was experimented that developmental effects of bovine in vitro fertilized embryos by coculture system and supplementation of energy materials into simple media. With the ovaries from slaughter house in vitro maturation by 24h, in vitro fertilization was performed with sperms collected by Percoll gradient method. Fertilized embryos were cocultured in 15% FCS+CZB medium with BOEC(bovine oviductal epithelial cell), GCM (granulosa cell monolayer) and MEFC(mouse embryonic fihrohlast cell). And also in this study, there was trying to improve the early developmental rate of embryos by addition of concentration-controlled Na-pyruvate, D-glucose which were used as energy sources into CZB medium. In vitro developmental rate was confirmed by the cleavage rate of 48h post-IVF and the embryo development rate at 240h culture. In the coculture system BOEC had 20.0% of blastocysts rate, which was higher than that of other coculture systems. To determine the optimum concentration for early embryo developmental rate rapidly, through the gradient of concentrations of Na-pyruvate and D-glucose, we focused on the cleavage rate at 48h and blastocysts rate at 240h. In case of Na-pyruvate, cleavage rate and developmental rate over 3-cell were lower at the concentration of 1.OOrnM than the other treatment concentrations, otherwise the blastocysts rate was higher as 23.2% than the others. That result showed that as like reported group which had higher develop-mental rate over 3-cell was also higher to the blastocysts rate. In case of D-glucose, there was no effects through the concentration changes. It was the result of this study for which the use of BOEC coculture system and 1.OOmM Na-pyruvate as an energy source had an effect upon embryo development.

  • PDF

Cats Cloned from Fetal Fibroblast Cells by Nuclear Transfer

  • Yin, X.J.;Lee, H.S.;Lee, Y.H.;Hwang, W.S.;Kong, I.K.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2004.10a
    • /
    • pp.26-31
    • /
    • 2004
  • This work was undertaken in order to study the developmental competence of nuclear transfer cat embryo with fetal fibroblast and adult skin fibroblast as donor nuclei. Oocytes wererecovered by mincing the ovaries in Hepes-buffered TCM199 and selected the cumulus oocyte complexes (COCs) with compact cumulus cell mass and dark. Homogenous ooplasm were cultured for maturation in TCM199 + 10% fetal bovine serum (FBS) for 12 hours and used as a source of recipient cytoplast for exogenous somatic nuclei. In Experiment 1, we evaluated the effect donor cell types on the reconstruction and development of cloned embryos. Fusion, first cleavage and blastocyst developmental rate was not different between fetal fibroblast and adult skin cell (71.2 vs. 66.8; 71.0 vs. 57.6; 4.0 vs. 6.1 %, P<0.05). In Experiment 2, cloned embryos were surgically transferred into the oviducts of recipient queens. One of seven recipient queens was delivered naturally 2healthy cloned cats and 1 stillborn from fetal fibroblast cell of male origin after 65 days embryo transfer. One of three recipient queens was delivered naturally 1 healthy cloned cat from adult skin cell of female after 65 days embryo transfer. The cloned cats showed genotypes identical to the donor cell lines, indicating that adult somatic cells can be used for feline cloning.

  • PDF

Development and pregnancy rates of Camelus dromedarius-cloned embryos derived from in vivo- and in vitro-matured oocytes

  • Son, Young-Bum;Jeong, Yeon Ik;Jeong, Yeon Woo;Olsson, Per Olof;Hossein, Mohammad Shamim;Cai, Lian;Kim, Sun;Choi, Eun Ji;Sakaguchi, Kenichiro;Tinson, Alex;Singh, Kuhad Kuldip;Rajesh, Singh;Noura, Al Shamsi;Hwang, Woo Suk
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.177-183
    • /
    • 2022
  • Objective: The present study evaluated the efficiency of embryo development and pregnancy of somatic cell nuclear transfer (SCNT) embryos using different source-matured oocytes in Camelus dromedarius. Methods: Camelus dromedarius embryos were produced by SCNT using in vivo- and in vitro- matured oocytes. In vitro embryo developmental capacity of reconstructed embryos was evaluated. To confirm the efficiency of pregnancy and live birth rates, a total of 72 blastocysts using in vitro- matured oocytes transferred into 45 surrogates and 95 blastocysts using in vivo- matured oocytes were transferred into 62 surrogates by transvaginal method. Results: The collected oocytes derived from ovum pick up showed higher maturation potential into metaphase II oocytes than oocytes from the slaughterhouse. The competence of cleavage, and blastocyst were also significantly higher in in vivo- matured oocytes than in vitro- matured oocytes. After embryo transfer, 11 pregnant and 10 live births were confirmed in in vivo- matured oocytes group, and 2 pregnant and 1 live birth were confirmed in in vitro- matured oocytes group. Furthermore, blastocysts produced by in vivo-matured oocytes resulted in significantly higher early pregnancy and live birth rates than in vitro-matured oocytes. Conclusion: In this study, SCNT embryos using in vivo- and in vitro-matured camel oocytes were successfully developed, and pregnancy was established in recipient camels. We also confirmed that in vivo-matured oocytes improved the development of embryos and the pregnancy capacity using the blastocyst embryo transfer method.

In vitro embryo production from ewes at different physiological stages

  • Alfredo Lorenzo-Torres;Raymundo Rangel-Santos;Agustin Ruiz-Flores;Demetrio Alonso Ambriz-Garcia
    • Journal of Veterinary Science
    • /
    • v.24 no.1
    • /
    • pp.10.1-10.10
    • /
    • 2023
  • Background: The collection of ovaries from slaughterhouses is an important source of oocytes for in vitro embryo production. On the other hand, the physiological stage of slaughtered females varies and influences embryo production. Objectives: The study examined the in vitro efficiency of embryos and demi-embryos from young, non-pregnant adult, and pregnant adult ewes from a local slaughterhouse. Methods: One thousand three hundred ovaries were collected from August to October 2020. The recovered oocytes were matured, fertilized, and cultured at 5% CO2, 38.5℃, and 100% humidity. Embryo bisection was performed in 96 blastocysts (n = 32 per treatment). The demiembryo pairs were incubated for their reconstitution for 12 h. SAS was used for data analysis. Results: The number of oocytes collected from the experimental group of non-pregnant adult ewes was higher (p ≤ 0.007) than those collected from the group of pregnant adult ewes (2.67 ± 0.19 vs. 2.18 ± 0.15 oocytes/group, respectively). The blastocyst rate was higher (p ≤ 0.0001) in the non-pregnant adult group (36.39%) than in the young (17.96%). The ratio of demi-embryos that recovered the blastocoelic cavity was higher (p < 0.05) in the young group (81.25%) than in the pregnant adult group (59.38%). The diameter of the demi-embryos was higher (p < 0.05) in the non-pregnant adult group (186.54 ± 8.70 ㎛) than those in the young and pregnant adult groups. Conclusions: In conclusion, the in vitro embryo production efficiency was highest when using oocytes from non-pregnant adult ewes under the conditions of this study.

Factors Influencing the Efficiency of In Vitro Embryo Production in the Pig

  • Lin, Tao;Lee, Jae Eun;Shin, Hyun Young;Oqani, Reza K.;Jin, Dong Il
    • Reproductive and Developmental Biology
    • /
    • v.39 no.2
    • /
    • pp.29-36
    • /
    • 2015
  • Pigs are considered an ideal source of human disease model due to their physiological similarities to humans. However, the low efficiency of in vitro embryo production (IVP) is still a major barrier in the production of pig offspring with gene manipulation. Despite ongoing advances in the associated technologies, the developmental capacity of IVP pig embryos is still lower than that of their in vivo counterparts, as well as IVP embryos of other species (e.g., cattle and mice). The efficiency of IVP can be influenced by many factors that affect various critical steps in the process. The previous relevant reviews have focused on the in vitro maturation system, in vitro culture conditions, in vitro fertilization medium, issues with polyspermy, the utilized technologies, etc. In this review, we concentrate on factors that have not been fully detailed in prior reviews, such as the oocyte morphology, oocyte recovery methods, denuding procedures, first polar body morphology and embryo quality.

Antioxidants as alleviating agents of in-vitro embryo production oxidative stress

  • Areeg Almubarak;Il-Jeoung Yu;Yubyeol Jeon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.47-53
    • /
    • 2023
  • Despite numerous advances in in-vitro embryo production (IVP), many documented factors have been shown to influence the development of mammalian preimplantation embryos and the success of IVP. In this sense, elevated levels of reactive oxygen species (ROS) correlate with poor outcomes in assisted reproductive technologies (ART) due to oxidative stress (OS), which results from an imbalance between ROS production and neutralization. Indeed, excessive production of ROS compromises the structural and functional integrity of gametes and embryos both in vivo and in vitro. In particular, OS damages proteins, lipids, and DNA and accelerates cell apoptosis. Several in-vivo and in-vitro studies report an improvement in qualityrelevant parameters after the use of various antioxidants. In this review, we focus on OS and the source of free radicals and their effects on oocytes, sperm, and the embryo during IVP. In addition, antioxidants and their important role in IVP, supplementation during oocyte in vitro maturation (IVM), in vitro culture (IVC), and semen extenders were discussed. Nevertheless, various methods for determining the level of ROS in germ cells have been briefly described. Still, it is crucial to develop standardized antioxidant supplement systems to improve overall IVP success. Further studies should explore the safety, efficacy, mechanism of action, and combination of different antioxidants to improve IVP outcomes.