Background : This study focuses on the new acupuncture method of embedding method which inserts a substance on the acupuncture points for continuous stimulation. Clinical applications and cautions were examined through literary investigations. Results : Based on the literary consideration of embedding method, the following results were obtained : 1. Embedding method is a combination of traditional and embedding technique to provide longer duration of stimulation on the acupuncture points. 2. To administer the embedding method, one needs to utilize a embedding thread besides acupuncture apparatus. Sheep gut is commonly used in China and the surgical thread is the choice in Korea. 3. Embedding method may vary from the patient to patient, depending on the nature and location of the illness. Piercing, embedding, and tying are some of the possibilities. 4. Embedding method may have different arrangement of threads based on the choice of usage. 5. Embedding method is effective for various chronic illnesses such as aches, functional diseases, and the diseases of internal organs. 6. When using the embedding methods, cautions against infection and side effects due to strong stimulation are mandatory.
Objectives : The purpose of this study is to help select an appropriate word embedding method when analyzing East Asian traditional medicine texts as data. Methods : Based on prescription data that imply traditional methods in traditional East Asian medicine, we have examined 4 count-based word embedding and 2 prediction-based word embedding methods. In order to intuitively compare these word embedding methods, we proposed a "prescription generating game" and compared its results with those from the application of the 6 methods. Results : When the adjacent vectors are extracted, the count-based word embedding method derives the main herbs that are frequently used in conjunction with each other. On the other hand, in the prediction-based word embedding method, the synonyms of the herbs were derived. Conclusions : Counting based word embedding methods seems to be more effective than prediction-based word embedding methods in analyzing the use of domesticated herbs. Among count-based word embedding methods, the TF-vector method tends to exaggerate the frequency effect, and hence the TF-IDF vector or co-word vector may be a more reasonable choice. Also, the t-score vector may be recommended in search for unusual information that could not be found in frequency. On the other hand, prediction-based embedding seems to be effective when deriving the bases of similar meanings in context.
Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권5호
/
pp.2723-2740
/
2017
Steganographic schemes which are based on minimizing an additive distortion function defined the overall impacts after embedding as the sum of embedding costs for individual image element. However, mutual impacts during embedding are often ignored. In this paper, an adaptive JPEG steganographic method based on weight distribution for embedding costs is proposed. The method takes mutual impacts during embedding in consideration. Firstly, an analysis is made about the factors that affect embedding fluctuations among JPEG coefficients. Then the Distortion Update Strategy (DUS) of updating the distortion costs is proposed, enabling to dynamically update the embedding costs group by group. At last, a kind of adaptive JPEG steganographic algorithm is designed combining with the update strategy and well-known additive distortion function. The experimental result illustrates that the proposed algorithm gains a superior performance in the fight against the current state-of-the-art steganalyzers with high-dimensional features.
본 논문에서는 SC-CNN의 특성을 이용한 임베딩 구동 카오스 동기화(Embedding Drive Synchronization) 방법을 소개하고 이 동기화 방법을 통한 비밀통신을 제안한다. 새로 제안한 임베딩 구동동기는 일반적인 구동동기 방법에서 모든 상태 변수를 구동시키는 방법과 달리 상태 변수 중 한 성분만을 구동시키는 방법이다. 본 논문에서는 SC_CNN에서 임베딩 구동 동기화를 먼저 이룬 후 비밀통신에 적용하였다.
인공신경망을 이용해서 기존 곡을 학습시키고 새로운 곡을 생성하기 위해서는 전처리 과정으로 곡을 신경망이 인식할 수 있는 숫자로 변환해야 하며, 지금까지는 원-핫 인코딩이 사용되어 왔다. 본 논문에서는 음표 임베딩과 마디 임베딩을 제안하고 기존의 원-핫 인코딩과 성능을 비교하였다. 성능비교는 어떤 방식이 작곡가가 작곡한 곡과 유사한 곡을 생성하는지를 정량적 평가에 근거해서 수행하였으며, 평가방법으로는 자연어 처리 분야에서 사용되는 정량적 평가 방법들을 이용하였다. 평가결과 마디 임베딩으로 생성한 곡이 가장 좋았으며 그 다음으로 음표 임베딩이 좋았다. 이는 본 논문에서 제안한 음표 임베딩과 마디 임베딩이 원-핫 인코딩보다 작곡가가 작곡한 곡과 유사한 곡을 생성한 것으로서 의의가 있다.
리버서블 워터마킹은 디지털 영상에 정보를 은닉하고 인증된 상대에게만 은닉된 정보를 복호화하고 원래의 상태로 영상을 복구하는 방법이다. 본 논문에서는 히스토그램 이동을 이용한 고용량 리버서블 워터마킹을 제안한다. 본 논문에서는 높은 삽입량을 위하여 영상을 $2{\times}2$ 블록으로 분할하고, 각 블록에 수평, 수직, 대각에 대한 화소쌍을 이용하여 가장 빈도가 높은 최대 삽입공간을 찾는다. 최대 삽입공간을 포함하는 위치맵을 이용하여 오버플로우와 언더플로우를 제거하여, 반복적인 워터마크 삽입을 통해 삽입량을 증가시킨다. 실험을 통하여 제안한 방법이 기존의 리버서블 워터마킹 방법과 비교하여 좋은 화질과 높은 삽입량을 나타냄을 확인하였다.
본 논문에서는 SC-CNN의 특성을 이용한 임베딩 구동 카오스 동기화 방법을 소개한다. SC-CNN은 Chua 회로의 미분방정식에서의 세가지 상태변수중 전류성분과 같이 동기화와 신호 합성에 어려운 상태변수를 전압성분으로 분리하여 다룰 수 있는 방법을 제공하고 있다. 여기서 지금까지 이용되오던 결합 동기나 구동동기화의 방법에 새로운 임베딩 구동 동기방식을 제안한다. 제안하는 Embedding Drive Synchronization(임베딩 구동동기)은 구동동기에서 미분상태변수를 완전히 대체하는 것이 아닌 한 성분만을 대체하여 구성되며 그 타당성을 검증하였다.
Reversible data embedding theory has marked a new epoch for data hiding and information security. Being reversible, the original data and the embedded data as well should be completely restored. Difference expansion transform is a remarkable breakthrough in reversible data hiding scheme. The difference expansion method achieves high embedding capacity and keeps the distortion low. This paper shows that the difference expansion method with simplified location map, and new expandability and changeability can achieve more embedding capacity while keeping the distortion almost the same as the original expansion method.
One of the main unresolved issues in large-eddy simulation(LES) of wall-bounded turbulent flows is the requirement of high spatial resolution in the near-wall region, especially in the spanwise direction. Such high resolution required in the near-wall region is generally used throughout the computational domain, making simulations of high Reynolds number, complex-geometry flows prohibitive. A grid-embedding strategy using a nonconforming spectral domain-decomposition method is proposed to address this limitation. This method provides an efficient way of clustering grid points in the near-wall region with spectral accuracy. LES of transitional and turbulent channel flow has been performed to evaluate the proposed grid-embedding technique. The computational domain is divided into three subdomains to resolve the near-wall regions in the spanwise direction. Spectral patching collocation methods are used for the grid-embedding and appropriate conditions are suggested for the interface matching. Results of LES using the grid-embedding strategy are promising compared to LES of global spectral method and direct numerical simulation. Overall, the results show that the spectral domain-decomposition grid-embedding technique provides an efficient method for resolving the near-wall region in LES of complex flows of engineering interest, allowing significant savings in the computational CPU and memory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.