• Title/Summary/Keyword: Embedded microprocessor

Search Result 115, Processing Time 0.029 seconds

AE32000B: a Fully Synthesizable 32-Bit Embedded Microprocessor Core

  • Kim, Hyun-Gyu;Jung, Dae-Young;Jung, Hyun-Sup;Choi, Young-Min;Han, Jung-Su;Min, Byung-Gueon;Oh, Hyeong-Cheol
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.337-344
    • /
    • 2003
  • In this paper, we introduce a fully synthesizable 32-bit embedded microprocessor core called the AE32000B. The AE32000B core is based on the extendable instruction set computer architecture, so it has high code density and a low memory access rate. In order to improve the performance of the core, we developed and adopted various design options, including the load extension register instruction (LERI) folding unit, a high performance multiply and accumulate (MAC) unit, various DSP units, and an efficient coprocessor interface. The instructions per cycle count of the Dhrystone 2.1 benchmark for the designed core is about 0.86. We verified the synthesizability and the area and time performances of our design using two CMOS standard cell libraries: a 0.35-${\mu}m$ library and a 0.18-${\mu}m$ library. With the 0.35-${\mu}m$ library, the core can be synthesized with about 47,000 gates and operate at 70 MHz or higher, while it can be synthesized with about 53,000 gates and operate at 120 MHz or higher with the 0.18-${\mu}m$ library.

  • PDF

A Study on 16 bit EISC Microprocessor (16 비트 EISC 마이크로 프로세서에 관한 연구)

  • 조경연
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.192-200
    • /
    • 2000
  • 8 bit and 16 bit microprocessors are widely used in the small sited control machine. The embedded microprocessors which is integrated on a single chip with the memory and I/O circuit must have simple hardware circuit and high code density. This paper proposes a 16 bit high code density EISC(Extendable Instruction Set Computer) microprocessor. SE1608 has 8 general purpose registers and 16 bit fixed length instruction set which has the short length offset and small immediate operand. By using an extend register and extend flag, the offset and immediate operand in instruction could be extended. SE1608 is implemented with 12,000 gate FPGA and all of its functions have been tested and verified at 8MHz. And the cross assembler, the cross C/C++compiler and the instruction simulator of the SE1608 have been designed and verified. This paper also proves that the code density$.$ of SE1608 shows 140% and 115% higher code density than 16 bit microprocessor H-8300 and MN10200 respectively, which is much higher than traditional microprocessors. As a consequence, the SE1608 is suitable for the embedded microprocessor since it requires less program memory to any other ones, and simple hardware circuit.

  • PDF

Implementation of Hypervisor for Virtualizing uC/OS-II Real Time Kernel (uC/OS-II 실시간 커널의 가상화를 위한 하이퍼바이저 구현)

  • Shin, Dong-Ha;Kim, Ji-Yeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.103-112
    • /
    • 2007
  • In this paper, we implement a hypervisor that runs multiple uC/OS-II real-time kernels on one microprocessor. The hypervisor virtualizes microprocessor and memory that are main resources managed by uC/OS-II kernel. Microprocessor is virtualized by controlling interrupts that uC/OS-II real-time kernel handles and memory is virtualized by partitioning physical memory. The hypervisor consists of three components: interrupt control routines that virtualize timer interrupt and software interrupt, a startup code that initializes the hypervisor and uC/OS-II kernels, and an API that provides communication between two kernels. The original uC/OS-II kernel needs to be modified slightly in source-code level to run on the hypervisor. We performed a real-time test and an independent computation test on Jupiter 32-bit EISC microprocessor and showed that the virtualized kernels run without problem. The result of our research can reduce the hardware cost, the system space and weight, and system power consumption when the hypervisor is applied in embedded applications that require many embedded microprocessors.

  • PDF

Multiple Register Files for Fast Context Switching in Real-Time Systems (실시간 시스템에서 빠른 문맥 전환을 위한 다중 레지스터 파일)

  • Kim, Jong-Wung;Cho, Jeoung-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.3
    • /
    • pp.128-135
    • /
    • 2010
  • Recently complexity of embedded software cause to be used real-time operating system (RTOS) to implement various functions in the embedded system. And also, according to requirement of complex functions in embedded systems, the number as well as complexity of tasks get increased continuously. In case that many tasks collaborated in a microprocessor, context switching time between tasks is a overhead waisting a CPU resource. Therefore the time of task context switching is an important factor that affects performance of RTOS. In this paper, we concentrate on the improvement of task context switch for reducing overhead and achieving fast response time in RTOS. To achieve these goal, we suggest multiple register files and task context switching algorithm. By reducing the context switch overhead, we try to ease scheduling and assure fast response times in multitasking environment. As a result, the context switch overhead decreased by 8~16% depend on the number of register files, and some task set which are not schedulable with single register file are schedulable due to that decrease with multiple register files.

Virtual ARM Machine for Embedded System Development (임베디드 시스템의 가상 ARM 머신의 개발)

  • Lee, So-Jin;An, Young-Ho;Han, Alex H;Hwang, Young-Si;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • To reduce time-to-market, more and more embedded system developers and system-on-chip designers rely on microprocessor-based design methodology. ARM processor has been a major player in this industry over the last 10 years. However, there are many restrictions on developing embedded software using ARM processor in the early design stage. For those who are not familiar with embedded software development environment or who cannot afford to have an expensive embedded hardware equipment, testing their software on a real ARM hardware platform is a challenging job. To overcome such a problem, we have designed VMA (Virtual ARM Machine), which offers easier testing and debugging environment to ARM based embedded system developers. Major benefits that can be achieved by utilizing a virtual ARM platform are (1) reducing development cost, (2) lowering the entrance barrier for embedded system novices, and (3) making it easier to test and debug embedded software designs. Unlike many other purely software-oriented ARM simulators which are independent of real hardware platforms, VMA is specifically targeted on SYS-Lab 5000 ARM hardware platform, (designed by Libertron, Inc.), which means that VMA imitates behaviors of embedded software as if the software is running on the target embedded hardware as closely as possible. This paper will describe how VMA is designed and how VMA can be used to reduce design time and cost.

  • PDF

Frequency Stabilization of He-Ne laser using One Chip Micro-Processor (1칩 마이크로 프로세서를 이용한 He-Ne 레이저의 주파수 안정화)

  • 최현승;엄태봉;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • A simple digital control system has been developed for the frequency stabilization of an internal mirror He-Ne laser. The system is based on one chip microprocessor with embedded Basic interpreter. To stabilize the laser output frequency, the signal such as power difference or beat frequency between two modes is supplied and processed by a microprocessor, and control signal is fed to the heating coil would round the laser tube for adjusting the spacing of the laser cavity mirror. Newly developed frequency stabilization system is totally digitized. The system and the frequency stability performance are briefly described.

  • PDF

A Study on the 32 bit RISC/DSP Microprocessor Appropriate for Embedded Systems (내장형 시스템에 적합한 32 비트 RISC/DSP 마이크로프로세서에 관한 연구)

  • 유동열;문병인;홍종욱;이태영;이용석
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.257-260
    • /
    • 1999
  • We have designed a 32-bit RISC microprocessor with 16/32-bit fixed-point DSP functionality. This processor, called YRD-5, combines both general-purpose microprocessor and digital signal processor (DSP) functionality using the reduced instruction set computer (RISC) design principles. It has functional units for arithmetic operation, digital signal processing (DSP) and memory access. They operate in parallel in order to remove stall cycles after DSP and load/store instructions with one or more issue latency cycles. High performance was achieved with these parallel functional units while adopting a sophisticated 5-stage pipeline structure and an improved DSP unit.

  • PDF

A Robot of Animal-Assisted-Therapy for the Psychotherapy of Handicapped Child (장애아동의 심리치료를 위한 동물매개치료용 로봇)

  • Choi, Chul-Hee;Choi, Byung-Jae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.3
    • /
    • pp.112-117
    • /
    • 2009
  • An animal assisted therapy (AAT) for handicapped child's psychotherapy has been reported by some researches. A robot can be substituted for the role of a real animal of the AAT. The robot for the AAT is called RAT (Robot Assisted Therapy). It consists of four parts: microprocessor-based MCU(Micro Control Unit), sensing part with various sensors, the movement part operated by some motors, and the exterior with soft feel. We will here introduce the RAT.

  • PDF

A Study in the Effects of DRAM on The Microprocessor Performance (마이크로프로세서의 성능에 끼치는 DRAM의 영향에 관한 연구)

  • Lee, Jongbok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.219-224
    • /
    • 2017
  • Recently, the importance of DRAM is very significant not only in embedded systems and mobile devices but also in high-end modern microprocessors and multicore processors. To keep up with this, both industry and academia have actively studied various types of future DRAMs. Therefore, accurate DRAM model is requisite when evaluating the microprocessor performance. In this paper, a microprocessor trace-driven simulator which can couple with the cycle-accurate DRAM simulator has been developed. Using SPEC 2000 benchmarks as input, the effect of cycle-accurate DDR3 model on the microprocessor performance has been evaluated.

A 16 bit FPGA Microprocessor for Embedded Applications (실장제어 16 비트 FPGA 마이크로프로세서)

  • 차영호;조경연;최혁환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.7
    • /
    • pp.1332-1339
    • /
    • 2001
  • SoC(System on Chip) technology is widely used in the field of embedded systems by providing high flexibility for a specific application domain. An important aspect of development any new embedded system is verification which usually requires lengthy software and hardware co-design. To reduce development cost of design effort, the instruction set of microprocessor must be suitable for a high level language compiler. And FPGA prototype system could be derived and tested for design verification. In this paper, we propose a 16 bit FPGA microprocessor, which is tentatively-named EISC16, based on an EISC(Extendable Instruction Set Computer) architecture for embedded applications. The proposed EISC16 has a 16 bit fixed length instruction set which has the short length offset and small immediate operand. A 16 bit offset and immediate operand could be extended using by an extension register and an extension flag. We developed a cross C/C++ compiler and development software of the EISC16 by porting GNU on an IBM-PC and SUN workstation and compared the object code size created after compiling a C/C. standard library, concluding that EISC16 exhibits a higher code density than existing 16 microprocessors. The proposed EISC16 requires approximately 6,000 gates when designed and synthesized with RTL level VHDL at Xilinix's Virtex XCV300 FPGA. And we design a test board which consists of EISC16 ROM, RAM, LED/LCD panel, periodic timer, input key pad and RS-232C controller. 11 works normally at 7MHz Clock.

  • PDF