
ETRI Journal, Volume 25, Number 5, October 2003 Hyun-Gyu Kim et al. 337

In this paper, we introduce a fully synthesizable 32-bit
embedded microprocessor core called the AE32000B. The
AE32000B core is based on the extendable instruction set
computer architecture, so it has high code density and a
low memory access rate. In order to improve the
performance of the core, we developed and adopted
various design options, including the load extension
register instruction (LERI) folding unit, a high
performance multiply and accumulate (MAC) unit,
various DSP units, and an efficient coprocessor interface.
The instructions per cycle count of the Dhrystone 2.1
benchmark for the designed core is about 0.86. We
verified the synthesizability and the area and time
performances of our design using two CMOS standard
cell libraries: a 0.35-µm library and a 0.18-µm library.
With the 0.35-µm library, the core can be synthesized with
about 47,000 gates and operate at 70 MHz or higher, while
it can be synthesized with about 53,000 gates and operate
at 120 MHz or higher with the 0.18-µm library.

Keywords: Integrated circuit, embedded microprocessor,
synthesizable core, SoC.

Manuscript received Jan. 15, 2003; revised July 26, 2003.
This work has been supported by the COSAR.
Hyun-Gyu Kim (phone : +82 2 545 4898 ext. 222, email: babyworm@adc.co.kr) is with

R&D Center, Advanced Digital Chips Inc., Seoul, Korea, and Graduate School of Korea
University, Seoul, Korea.

Dae-Young Jung (email: dyjung@adc.co.kr), Hyun-Sup Jung (email: hsjung@adc.co.kr),
Young-Min Choi (email: choiym@adc.co.kr), Jung-Su Han (email: jshan@adc.co.kr), and
Byung-Gueon Min (email: bgmin@adc.co.kr) are with R&D Center, Advanced Digital Chips
Inc., Seoul, Korea.

Hyeong-Cheol Oh (email: ohyeong@korea.ac.kr) is with School of Engineering, Korea
University at Seo-Chang, Korea.

I. Introduction

In the era of deep sub-micron technologies, a single chip,
known as a system-on-a-chip (SoC), integrates multiple systems
that were previously constructed as one or more printed circuit
boards. An SoC may include a couple of microprocessors,
various functional blocks, a bus system, and several I/O
elements. Today’s trend toward an extremely short time-to-
market is forcing SoC designers to reuse available design blocks,
called cores [1]. In the design of an SoC, selecting the
microprocessor cores is an especially important part of the
design process because they control the whole system.

Reusable cores are divided into hard IPs and soft IPs. The hard
IP is a complete physical circuit description of the core. The hard
IP is optimized and usually the best solution for a specific
process, but it is less portable than its soft counterpart. In these
days, all IPs start off as soft IPs, because soft IPs can be more
flexibly ported to and implemented in any process. A soft IP is a
synthesizable register transfer level (RTL) code that has been
functionally verified and has to be written in such a good coding
style that it is reusable. In general, it takes more effort to optimize
a soft IP to the target process than its hard counterpart [2].

In this paper, we present the architecture and the
performance of a fully synthesizable 32-bit microprocessor
core called the AE32000B. Three objectives motivated the
AE32000B project. First, we intended to achieve high
performance using the so-called “brainiac” approach [3],
because it is generally hard for a synthesizable core to operate
at a high frequency. Second, we aimed at designing a core that
is fully synthesizable within a reasonably small area without
losing much the power of its instruction set. Third, we intended
to develop an interfacing scheme that could be used to integrate

AE32000B: a Fully Synthesizable 32-Bit
Embedded Microprocessor Core

Hyun-Gyu Kim, Dae-Young Jung, Hyun-Sup Jung, Young-Min Choi,
Jung-Su Han, Byung-Gueon Min, and Hyeong-Cheol Oh

338 Hyun-Gyu Kim et al. ETRI Journal, Volume 25, Number 5, October 2003

various types of coprocessors with the microprocessor core.
The AE32000B is based on the extendable instruction set

computer (EISC) architecture, so it has high code density and a
low memory access rate [4], [5]. It is equipped with a 32-bit
ALU, 32-bit barrel shifter, and a multiply and accumulate
(MAC) unit that can handle a MAC operation (32×32+64=64)
in a single cycle. It also has various functional units to support
DSP applications.

In the embedded microprocessor system, a relevant
coprocessor is often an efficient solution for a specific
application. Therefore, in order to operate the system properly,
an efficient coprocessor interface is essential. The main
objective of the coprocessor interface for the AE32000B
system was to support various types of coprocessors efficiently.

To present the performance of our design, we use the
Dhrystone 2.1 benchmark. The instructions per cycle (IPC)
count of the Dhrystone 2.1 benchmark for the designed core is
about 0.86. We verified the synthesizability and the area/time
performances of our design using two CMOS standard cell
libraries: a 0.35-µm library and a 0.18-µm library. With the
0.35 µm library, the core could be synthesized with about
47,000 gates and operate at 70 MHz in the worst case, while it
could be synthesized with about 53,000 gates and operate at
120 MHz in the worst case with the 0.18-µm library.

The rest of the paper is organized as follows. We briefly
discuss the EISC architecture in section II and introduce the
microarchitecture of the AE32000B in section III. Then, our
verification method and the performance of AE32000B are
described in sections IV and V. Lastly, section VI summarizes
the paper.

II. The EISC Architecture

In an embedded microprocessor system, code density and
chip area are two major design issues, since these costs are
more important in this arena. However, many 32-bit embedded
microprocessors suffer from poor code density. In order to
address this problem, some RISC-based 32-bit
microprocessors adopt 16-bit compressed instruction set
architectures, such as ARM THUMB [6] and MIPS16 [7]. This
approach provides better code density but needs some
mechanisms to extend the insufficient immediate field and to
provide backward compatibility with their previous
architectures, which can result in extra hardware overhead.
Moreover, these architectures have difficulty in utilizing their
registers efficiently [6], [7].

The EISC architecture takes a different approach while
achieving high code density and a low memory access rate [4],
[5]. The EISC uses an efficient fixed length 16-bit instruction
set for 32-bit data processing. To resolve the problem of

insufficient immediate operand fields in a concise way, EISC
uses an independent instruction called load extension register
(LERI), which consists of a 2-bit opcode and a 14-bit
immediate value. The LERI instruction extends the immediate
field by loading an immediate value to a special register called
the extension register. By using LERI instructions, the EISC
architecture can make the program code more compact than
the competing architectures, since the frequency of LERI
instructions is less than 20% in many programs. In addition,
EISC does not require instructions for switching its processor
mode between the compressed instruction mode and the
normal instruction mode. (For competing architectures, extra
mode-changing instructions are added to use specific
instructions such as MAC instructions.)

As a result, the EISC architecture has higher code density
than ARM THUMB and MIPS16 architectures. The code
density of the EISC is 6.5% higher than the ARM THUMB
and 11.5% higher than the MIPS16. This is a considerable
improvement in two aspects. First, the EISC core can save a
large portion of the fetch-related power consumption. Second,
the EISC core and its program memory can be integrated into a
smaller die. In addition, the EISC architecture reduces its data
memory access rate by fully utilizing its 16 registers. The data
memory access rate of the EISC is 35.1% less than that of the
ARM T HUMB and 37.6% less than that of MIPS16 [4]. Thus,
the EISC can reduce both instruction references and data
references. Reducing the memory accesses would bring
reduction in power consumption related to the memory
accesses and also lessen the performance degradation caused
by the speed gap between the processor and the memory.
Moreover, the EISC-based system can be implemented in a
smaller die, because the memory circuit can be made smaller.

III. Microarchitecture

The AE32000B core uses a simple 5-stage scalar pipeline
(Fig. 1). The five stages are instruction fetch (IF), instruction
decode (ID), execution (EX), memory access (MEM), and
write-back (WB) stages.

1. Instruction Fetch and LERI Instruction Folding

The AE32000B core has an eight-entry instruction queue
between the IF stage and the ID stage. The instruction queue
decouples the instruction fetch stage and the execution portion
(ID, EX, MEM, WB) of the pipeline. Instructions are
prefetched into the instruction queue to minimize the number
of the pipeline stalls caused by instruction cache misses. In
addition, the AE32000B uses the queue to fold in LERI
instructions.

ETRI Journal, Volume 25, Number 5, October 2003 Hyun-Gyu Kim et al. 339

Decoder

ALU

Align

MAR MDR

W B control

Prefetch PC
generator

Prefetch PC

Predecoder

Queue
management

unit

Instr. queue

PC

C
op

ro
ce

ss
or

in
te

rfa
ce

Immediate
generator

Operand
fetcher

Regfile

Operand
fetcher

Hazard
detection Operand

fetcher

PC / BTA
generator,

branch
resolution

unit

IMMOperands

Forwarding unit

Leading
zero/one
counter

Barrel
shifter

MAC & MUL
(32x32+64)

Flag
generator

Address gen

ALUOUTMH:ML

MW _SPBUS MW _CBUS

Align &
extension

D
at

a
M

em
or

y
ac

ce
ss

 &
co

pr
oc

es
so

r i
nt

er
fa

ce

LERI instruction
folding unit

In
st

r u
ct

io
n

m
e m

o r
y

in
te

rfa
ce

Fig. 1. Microarchitecture of the AE32000B core.

Instructionint_info
20 19 18 16 15 0

isLERI

valid

[18]: ibrkpt instruction breakpoint
[17]: iberr bus error on instruction bus
[16]: iint cp0 exception during instruction access

Fig. 2. An entry of the instruction queue.

Figure 2 shows the structure of each entry of the instruction
queue. It consists of a valid bit, a LERI checking bit, an
information field to indicate whether an interrupt occurred
during an access to the instruction memory, and an instruction.
A prefetched instruction is predecoded to determine whether it
is a LERI instruction. The LERI instruction folding unit fetches

up to four valid instructions from the instruction queue. Then,
by checking the isLERI field, this unit checks whether and
where non-LERI instructions exist. If any valid non-LERI
instruction exists among the fetched instructions, the folding
unit sends a non-LERI instruction to the instruction register and
extends the LERI instructions to the extension register. This
unit also checks the int_info field for generating the requested
exceptions.

2. DSP Features

As the need of signal processing grows, many 32-bit
embedded microprocessors tend to be equipped with DSP
functions. Many DSP algorithms perform multiply and
accumulation operations intensively [14]. To accelerate the
operation, the AE32000B core has a powerful MAC operation
unit that can process a MAC operation (32×32+64=64) in a
single cycle. The MAC unit can also be used for a multiply
operation (32×32=64). Moreover, the core is equipped with a
32-bit barrel shifter and a leading one/zero counter. With this
DSP functionality, the AE32000B core can process DSP
applications efficiently without an additional coprocessor.

3. Debugging Capability

In order to debug an SoC system, it is sometimes necessary
but difficult to watch the internal state of the embedded
microprocessor in the system. Over the past few years, a
number of studies have been carried out on the method of
debugging embedded microprocessor cores. A common
approach is to use an in-circuit-emulator (or ICE breaker), for
which an extra processor emulates the embedded
microprocessor. The use of an expensive ICE breaker increases
the overall verification cost. Hence, currently, some
microprocessors are integrated in a chip with an ICE unit such
as the background debug mode debugger [9]. This approach
can decrease the cost of the verification phase but increases the
cost of the chip itself.

The AE32000B has a special operation mode, called the on-
silicon ICE (OSI)) mode, to inexpensively provide debugging
capability. In the OSI mode, the debugger of the AE32000B
can access the internal registers including special purpose
registers.

The OSI module can be implemented in the system
coprocessor called the coprocessor 0 (CP0). This unit is
comprised of simple comparators, registers, and a
communication port. The OSI breaker module can trace up to
eight breakpoints or watchpoints. The breaker module
monitors the addresses accessed during the instruction fetch
stage and the data memory access stage, and it generates a
proper break exception if any break condition is met. When the

340 Hyun-Gyu Kim et al. ETRI Journal, Volume 25, Number 5, October 2003

core detects a break exception, it switches its operating mode to
the OSI mode to activate the debugging capability. The OSI
module can be configured to use a parallel port or a serial port
to communicate with the host computer that is used for
debugging the system remotely.

4. Coprocessor Interface

The coprocessor interface of the AE32000B is a passive one.
Figure 3 shows the coprocessor interface for the AE32000B.
The cpctrl signal is used to identify the operation of the
coprocessor. There are four types of instructions for the
coprocessor interface: the instructions for specifying
commands to the coprocessors, the instructions for directing
data transfer between the AE32000B and a coprocessor, the
instructions for directing data transfer between a coprocessor
and a memory (under the control of the AE32000B), and the
instructions for polling.

AE32000B

Coprocessor

cp
ct

rl[
3:

0]
cp

id
x[

3:
0]

cp
no

[1
:0

]

id
_c

pb
us

y
cp

in
t

cp
ac

tiv
e

cp
ou

t[3
1:

0]
cp

in
[3

1:
0]

m
em

_c
pa

cc
m

em
_c

pb
us

y

dadr[31:0]
dbus_out[31:0]

dbus_in[31:0]

cpbus_out[x:0]
cpbus_in[x:0]

Fig. 3. Coprocessor interface.

In order to send a coprocessor instruction to a coprocessor,
the AE32000B must fetch the instruction from the instruction
memory and feed it to the coprocessor, since the coprocessor is
a passive device. A coprocessor instruction is encapsulated in
the CPCMDn instruction. The width of the coprocessor
instruction can be up to 32 bits.

During the data transfer operation between the AE32000B
and a coprocessor, the pipeline of the coprocessor is
synchronized with the pipeline of the AE32000B to avoid
structural hazards. The coprocessor uses the id_cpbusy signal
to stall the pipeline in the core.

All the memory access operations of the coprocessor are
managed by the AE32000B. When the core decodes an LDCn
or an STCn instruction, it sends a synchronization request to the

coprocessor. The coprocessor detects hazards about the
destination (source) register and determines whether it has to
send the id_cpbusy signal to the AE32000B. In the MEM stage,
the AE32000B sends the mem_cpacc signal as a
synchronization request and controls the memory bus to access
the memory. Then, the coprocessor sends the mem_cpbusy
signal to the microprocessor as an acknowledgement to
complete the memory access operation. If a wider bus is
needed in a coprocessor, the cpbus_in bus and the cpubs_out
bus can be connected to the coprocessor.

Sometimes a coprocessor operates independently to increase
the overall performance. The coprocessor commands are
passed to the coprocessor in the ID stage. Then, the
coprocessor can run without stalling the pipeline in the
AE32000B. Two methods can be used for checking results:
polling and interrupts. In order to support polling, the
AE32000B has two instructions: GETCn and EXECn. The
former modifies the zero flag in the AE32000B by setting a
specific status bit in the coprocessor. The latter generates
coprocessor exceptions. In order to generate an interrupt, the
coprocessor sends the exception information to the external
interrupt controller, which then can also be used to check the
completion of an operation.

Another synchronization issue in the coprocessor interface is
how to handle the exception on the microprocessor when the
coprocessor runs independently. For this purpose, we use the

Random Vector
Generator

ae32000-elf-gcc

ESCAsim
Verilog

Simulator

Comparator

.C

.ROM, .BIN

Error Report flowout. rpt iflow.dat

Fig. 4. Flow of the constrained random test.

ETRI Journal, Volume 25, Number 5, October 2003 Hyun-Gyu Kim et al. 341

cpactive signal. The AE32000B cannot enter the exception
state for interrupts when cpactive is asserted. Some exceptions
of higher priority can abort the operation in the coprocessor to
initiate the exception handling routine.

IV. Verification

In order to verify the functionality and the synthesizability of
the designed AE32000B core, we used three verification
techniques. First, we used a static code checking method,
called Lint, to detect syntax error and coding misses in the early
stage. Second, we used a focused method by using a set of test
vectors based on a sophisticated checklist. Lastly, we used a
random checking with a constrained random vector generator.

1. Lint Checking

Lint is a static code checking method [2]. In the design of the
AE32000B, the lint method was widely used in the early
design stage to check syntax errors and frequently occurring
coding misses such as inconsistencies in assign statements or
port widths. Moreover, we used the lint method to check RTL
coding style, as specified in [2] and [10], to increase reusability
and synthesizability. A good coding style reduces coding
misses and improves the quality of the design. As a result, we
were able to detect many errors in the early design stage and
make the AE32000B model consistent in coding style. It made
our code easy to verify and modify.

2. Focused Test

In the functional verification phase, we used a focused test
[1]. Since the quality of the test vectors in this test closely
depends on the test engineer’s intention, we developed a
sophisticated checklist, based on the specification and the bug
list from the previous project. We also added some self-
checking codes to reduce verification efforts.

3. Constrained Random Test

Random checking, commonly used for verifying the
functionality of cores, can check the corner cases that are hard
to find by the focused test. The drawback to random checking
methods is that they need many test vectors to achieve the
target coverage [11]. Thus, an automated checking method is
needed in the random test. We decided to use an instruction-
based test vector that examines the instruction specification
and the constraints of memory accesses. Thus, we developed
an in-house constrained random vector generator for the
AE32000B.

The whole verification flow of the constrained random test is

described in Fig. 4. The random vector generator makes the test
vectors in .C files. The generator can confine the memory
access range and the sequence of instructions to avoid
unwanted (prevented in the specification) situations, such as
the breakdown of a stack area. The generated test vector is
included in an in-line assembly code and has a self-checking
code. To support automated verification, we used a cycle
accurate C simulator, called the ESCAsim, as a reference
model. We fed the compiled test vectors to both the Verilog
RTL model and ESCAsim. Both the Verilog simulator and
ESCAsim trace the contents of the program counter during the
runs. We compared the results to verify the correctness of the
Verilog model. We also detected some errors by using self-
checking code in the test vectors.

V. Performance Estimation

1. Impact of LERI Folding

In this section, we present the impact of the LERI instruction
folding on the performance of the designed core. First, we
compiled the Dhrystone 2.1 benchmark and the quicksort
program to see the frequency of the LERI instructions. The
frequency of the LERI instructions was closely related to the
offset length and the size of immediate values. From our
experiment, we found that the frequency was about 11.2% in
the compiled programs.

0.00

0.76

0.92

0.82

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Folding rate
IPC

Normal foldingNo folding

Fig. 5. Impact of the LERI instruction folding.

342 Hyun-Gyu Kim et al. ETRI Journal, Volume 25, Number 5, October 2003

Fig. 6. IPCs of Dhrystone 2.1 for the AE32000B core and other
embedded cores under a perfect memory system
environment (50 MHz normalized, zero-wait memory system).

20.6

32 32.5

39.4
43

49.8

58.6

63.6

0

10

20

30

40

50

60

70

In
fin

eo
n

C
16

7

H
ita

ch
i S

H
3

A
R

M
7

TH
U

M
B

In
fin

eo
n

C
16

6S
V

2

A
D

C
 A

E
32

00
0B

P
ow

er
P

C
 M

P
C

50
0

Tr
iC

or
e

- R
id

er
A

Tr
iC

or
e

- R
id

er
B

P
er

fo
rm

an
ce

 (M
IP

S
)

The impact of the LERI folding is summarized in Fig. 5.
Without the LERI instruction-folding unit, the average IPC
count is about 0.76, while it is about 0.82 with the LERI
folding unit. The designed LERI folding unit can fold and hide
about 92% of the LERI instructions and increase the IPC count
by about 7.9%.

The cost effectiveness is more important in the embedded
market. We synthesized the LERI instruction-folding unit using
a 0.35-µm static CMOS standard cell library and found that the
unit can be implemented with about 1900 gates, which is only
4% of the whole AE32000B.

2. Performance

In order to compare the performance of the AE32000B with
those of other microprocessors, we use the Dhrystone 2.1
benchmark, which is widely used for embedded processors.
We compiled the benchmark using a GNU C compiler for the
AE32000B, called the ae32000-elf-gcc, with a –O2 optimization
option. The IPC of the Dhrystone 2.1 benchmark for the
designed core was about 0.86, which we normalized for 50
MHz, to compare it with those for other processors and
compared to those for other processors in million instructions
per second (MIPS) metric [12]. These results are derived under

perfect memory configuration (a zero-wait memory system).
The result is summarized in Fig. 6.

3. Synthesis Results

In order to verify the synthesizability of our design and to
suggest its operation frequency and area guideline, we
synthesized the design core using two target libraries: a static
0.35-µm CMOS standard library (STD90) by Samsung
Electronics and a static 0.18-µm CMOS standard cell library
(sb18os120_anam) by Avanti. We compiled the designed the
AE32000B core using a Synopsys synthesis and optimization
tool [13]. Table 1 shows the results of the synthesis and the
simulation with the worst case condition—slow process, 125
OC junction temperature, and 10% lower supply voltage than
the normal condition. Under the best case condition, our design
could operate at 280 MHz with 1.98 V in the 0.18-µm process.

Table 1. Operation frequency and implementation cost.

Technology
Operation
frequency

Gate usage

0.18 µm
Higher than
120 MHz

Less than
53,000 Gates

0.35 µm
Higher than

70 MHz
Less than

47,000 Gates

VI. Conclusions

This paper presented a 32-bit fully synthesizable
microprocessor core called the AE32000B. This
microprocessor has high code density and low memory access
rate. It has some unique features: the LERI folding method for
improving performance and the OSI for debugging internal
status. It also has DSP functionality, which can be used in
various DSP applications. The AE32000B has an efficient
coprocessor interface to support various coprocessors.

Our experimental results showed that the LERI folding unit
considerably improves performance. Analysis of the Dhrystone
2.1 benchmark showed that the AE32000B achieved an IPC
count of about 0.86. This result demonstrates that the
performance of the AE32000B is above middle range in the
embedded market. In the synthesis result, the AE32000B can
operate higher than 120 MHz in 0.18 µm and higher than 70
MHz in 0.35 µm. It uses about 47,000 to 53,000 gates in the
implementation.

In the design of the AE32000B, we focused on increasing
IPC count with a small die size. Hence, operating frequency
was a little slower than competitors, but we believe the overall

ETRI Journal, Volume 25, Number 5, October 2003 Hyun-Gyu Kim et al. 343

performance of the AE32000B outperforms competitors.
ADChips, Inc. plans to use the new synthesizable core using
the “speed-demon” approach to achieve higher operation
frequency.

References

[1] P. Rashinkar, P Paterson, and L. Singh, System-on-a-Chip
Verification: Methodology and Technique, Kluwer Academic
Publishers, Boston, 2001.

[2] M. Keating and P. Bricaud, Reuse Methodology Manual: For
System-on-a-Chip Designs, 2nd ed., Kluwer Academic Publishers,
Boston, 1999.

[3] L. Gwennap, “Brainiacs, Speed Demons, and Farewell,”
Microprocessor Report, vol. 13, Issue 17, Dec. 1999.

[4] H. Lee, P. Beckett, and B. Appelbe, “High-Performance
Extendable Instruction Set Computing,” Proc. of 6th ACSAC 2001,
Jan. 2001, pp. 89-94.

[5] H.C. Oh, H.G. Kim, H.S. Jung, J.W. Lee, B.J. Kim, J.Y. Jung, B.G.
Min, J.Y. Lim, H. Lee, and K.H. Kwon, “AE32000: An
Embedded Microprocessor Core,” Proc. of 2nd AP-ASIC 2000,
Aug. 2000, pp. 255-258.

[6] Introduction to Thumb, ARM Ltd., http://www.arm.com/
Documentation/Overviews/Thumb_intro/.

[7] K.D. Kissell, MIPS16: High-Density MIPS for the Embedded
Market, MIPS Tech.. Inc., http://www.mips. com/Documentation/
MIPS16whitepaper.pdf.

[8] L.T. Clark, E.J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus,
M. Morrow, K.E. Verlarde, and M.A. Yarch, “An Embedded 32-b
Microprocessor Core for Low-Power and High-Performance
Applications,” IEEE J. of Solid-State Circuits, vol. 36, no. 11, Nov.
2001, pp. 1599-1608.

[9] Using Background Debug Mode for the M68HC12 Family,
Motorola, http://www.motorola.com/.

[10] SIPAC, Verilog Coding Guideline v1.0, http://www.sipac.org.
[11] N. Dohm, C. Ramey, D. Brown, S. Hildbrandt, J. Huggins, M.

Quinn, and S. Taylor, “Zen and the Art of Alpha Verification,”
Proc. of ICCD-98, Oct. 1998, pp. 111-117.

[12] K.D. Maier, “C166S V2–A Single Cycle 16-Bit Microcontroller
and DSP Core for Next Generation Systems on Chips,” Proc. of
4th COOL Chips, Apr. 2001, pp. 79-93.

[13] Synopsis, Version 2000.11, Synopsis Inc., Mountain View, CA,
Nov. 2000.

[14] J. Lee, J. Lee, M.H. Sunwoo, S. Moh, and S. Oh, “A DSP
Architecture for High-Speed FFT in OFDM Systems,” ETRI J.,
vol. 24 no. 5, Oct. 2002, pp. 391-397.

Hyun-Gyu Kim received his BS and MS
degrees in electronics and information
engineering from Korea University in Seoul,
Korea in 1998 and 2000. He is currently
working toward the PhD degree in Korea
University. He joined Advanced Digital Chips
Inc. in Seoul, Korea, in 2002 where he is

currently an Associative Research Engineer of R&D Center. His
research interests include computer arithmetic and architecture, SoC
design, and verification methodologies.

Dae-Young Jung received his BS in
information and communication engineering
from Chung-Buk National University in
Cheong-Ju, Korea, in 2000. He Joined the
Advanced Digital Chips, Inc. in Seoul, Korea,
in his graduate years where he is currently a
Research Engineer of R&D Center. His

research interests include microprocessor design, SoC verification, and
design.

Hyun-Sup Jung received his BS and MS
degrees in electronics and information
engineering from Korea University in Seoul,
Korea, in 1999 and 2002. He is currently an
Associate Research Engineer at Advanced
Digital Chips, Inc. in Seoul, Korea, where he
has worked since his graduate years. He is

currently involved in the research and development of an EISC
microprocessor.

Young-Min Choi received the BS and MS
degrees in telecommunication and information
engineering from Hankuk Aviation University
in Gyeonggi-do, Korea, in 1999 and 2001. He
joined Advanced Digital Chips, Inc. in Seoul,
Korea in 2001 where has been engaged with the
design and verification of the EISC processor.

He is currently studying and designing TLB for virtual memory system.

Jung-Su Han received the BS degree in control
and instrumentation engineering and MS degree
in information and communication engineering
from Chonbuk National University, Korea, in
1995 and 1997. From 1997 to 1999, he was
with Anam S&T, where he worked on digital
circuit design and ASIC design. He joined

Advanced Digital Chips, Inc. in Seoul, Korea, in 1999 where he is a
Research Engineer of R&D Center. His research interests include
microarchitecture of EISC and ASIC design.

344 Hyun-Gyu Kim et al. ETRI Journal, Volume 25, Number 5, October 2003

Byung-Gueon Min received the BS degree in
electronic engineering from Korea University in
Seoul, Korea in 1987. From 1987 to 1997, he
was with the Semiconductor Division of
Samsung Electronics, where he was engaged in
research and development and developed Super
VGA ICs, 2D/3D multimedia graphic

accelerator ICs for PC’s graphic adapter, and digital still camera chips
including a 32-bit embedded microprocessor. From 1997 to 1999, he
was with the Silicon Modular Network Inc. in Korea, where he
designed circuits for micro-controller and developed a solid state hard
disk controller IC. In 1999, he joined the Advanced Digital Chips, Inc.
in Korea, where he has been working on the development of new
embedded microprocessors, extendable instruction set computer
(EISC), and integrated circuits using the EISC for application specific
products, such as, video/graphic application, network appliance, and
general purpose microprocessor ICs. At present, he is the Director of
the Research Laboratory at ADChips.

Hyeong-Cheol Oh received the BS degree in
electronics engineering from Seoul National
University in 1982 and the MS degree in
electrical and electronics engineering from the
Korea Advanced Institute of Science and
Technology in 1984. He received the PhD
degree in electrical engineering from the

University of Maryland at College Park in 1993. He joined Korea
University at Seo-Chang in 1994 where he is currently a Professor of
electronics and information engineering. He also worked for three
years at Goldstar Semiconductor Ltd. in Korea. His research interests
include parallel computation, computer arithmetic and architecture, and
VLSI design.

