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In this paper, we introduce a fully synthesizable 32-bit 
embedded microprocessor core called the AE32000B. The 
AE32000B core is based on the extendable instruction set 
computer architecture, so it has high code density and a 
low memory access rate. In order to improve the 
performance of the core, we developed and adopted 
various design options, including the load extension 
register instruction (LERI) folding unit, a high 
performance multiply and accumulate (MAC) unit, 
various DSP units, and an efficient coprocessor interface. 
The instructions per cycle count of the Dhrystone 2.1 
benchmark for the designed core is about 0.86. We 
verified the synthesizability and the area and time 
performances of our design using two CMOS standard 
cell libraries: a 0.35-µm library and a 0.18-µm library. 
With the 0.35-µm library, the core can be synthesized with 
about 47,000 gates and operate at 70 MHz or higher, while 
it can be synthesized with about 53,000 gates and operate 
at 120 MHz or higher with the 0.18-µm library. 
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I. Introduction 

In the era of deep sub-micron technologies, a single chip, 
known as a system-on-a-chip (SoC), integrates multiple systems 
that were previously constructed as one or more printed circuit 
boards. An SoC may include a couple of microprocessors, 
various functional blocks, a bus system, and several I/O 
elements. Today’s trend toward an extremely short time-to-
market is forcing SoC designers to reuse available design blocks, 
called cores [1]. In the design of an SoC, selecting the 
microprocessor cores is an especially important part of the 
design process because they control the whole system. 

Reusable cores are divided into hard IPs and soft IPs. The hard 
IP is a complete physical circuit description of the core. The hard 
IP is optimized and usually the best solution for a specific 
process, but it is less portable than its soft counterpart. In these 
days, all IPs start off as soft IPs, because soft IPs can be more 
flexibly ported to and implemented in any process. A soft IP is a 
synthesizable register transfer level (RTL) code that has been 
functionally verified and has to be written in such a good coding 
style that it is reusable. In general, it takes more effort to optimize 
a soft IP to the target process than its hard counterpart [2]. 

In this paper, we present the architecture and the 
performance of a fully synthesizable 32-bit microprocessor 
core called the AE32000B. Three objectives motivated the 
AE32000B project. First, we intended to achieve high 
performance using the so-called “brainiac” approach [3], 
because it is generally hard for a synthesizable core to operate 
at a high frequency. Second, we aimed at designing a core that 
is fully synthesizable within a reasonably small area without 
losing much the power of its instruction set. Third, we intended 
to develop an interfacing scheme that could be used to integrate 

AE32000B: a Fully Synthesizable 32-Bit 
Embedded Microprocessor Core 

Hyun-Gyu Kim, Dae-Young Jung, Hyun-Sup Jung, Young-Min Choi, 
Jung-Su Han, Byung-Gueon Min, and Hyeong-Cheol Oh  



338   Hyun-Gyu Kim et al. ETRI Journal, Volume 25, Number 5, October 2003 

various types of coprocessors with the microprocessor core. 
The AE32000B is based on the extendable instruction set 

computer (EISC) architecture, so it has high code density and a 
low memory access rate [4], [5]. It is equipped with a 32-bit 
ALU, 32-bit barrel shifter, and a multiply and accumulate 
(MAC) unit that can handle a MAC operation (32×32+64=64) 
in a single cycle. It also has various functional units to support 
DSP applications. 

In the embedded microprocessor system, a relevant 
coprocessor is often an efficient solution for a specific 
application. Therefore, in order to operate the system properly, 
an efficient coprocessor interface is essential. The main 
objective of the coprocessor interface for the AE32000B 
system was to support various types of coprocessors efficiently. 

To present the performance of our design, we use the 
Dhrystone 2.1 benchmark. The instructions per cycle (IPC) 
count of the Dhrystone 2.1 benchmark for the designed core is 
about 0.86. We verified the synthesizability and the area/time 
performances of our design using two CMOS standard cell 
libraries: a 0.35-µm library and a 0.18-µm library. With the 
0.35 µm library, the core could be synthesized with about 
47,000 gates and operate at 70 MHz in the worst case, while it 
could be synthesized with about 53,000 gates and operate at 
120 MHz in the worst case with the 0.18-µm library.  

The rest of the paper is organized as follows. We briefly 
discuss the EISC architecture in section II and introduce the 
microarchitecture of the AE32000B in section III. Then, our 
verification method and the performance of AE32000B are 
described in sections IV and V. Lastly, section VI summarizes 
the paper. 

II. The EISC Architecture 

In an embedded microprocessor system, code density and 
chip area are two major design issues, since these costs are 
more important in this arena. However, many 32-bit embedded 
microprocessors suffer from poor code density. In order to 
address this problem, some RISC-based 32-bit 
microprocessors adopt 16-bit compressed instruction set 
architectures, such as ARM THUMB [6] and MIPS16 [7]. This 
approach provides better code density but needs some 
mechanisms to extend the insufficient immediate field and to 
provide backward compatibility with their previous 
architectures, which can result in extra hardware overhead. 
Moreover, these architectures have difficulty in utilizing their 
registers efficiently [6], [7]. 

The EISC architecture takes a different approach while 
achieving high code density and a low memory access rate [4], 
[5]. The EISC uses an efficient fixed length 16-bit instruction 
set for 32-bit data processing. To resolve the problem of 

insufficient immediate operand fields in a concise way, EISC 
uses an independent instruction called load extension register 
(LERI), which consists of a 2-bit opcode and a 14-bit 
immediate value. The LERI instruction extends the immediate 
field by loading an immediate value to a special register called 
the extension register. By using LERI instructions, the EISC 
architecture can make the program code more compact than 
the competing architectures, since the frequency of LERI 
instructions is less than 20% in many programs. In addition, 
EISC does not require instructions for switching its processor 
mode between the compressed instruction mode and the 
normal instruction mode. (For competing architectures, extra 
mode-changing instructions are added to use specific 
instructions such as MAC instructions.) 

As a result, the EISC architecture has higher code density 
than ARM THUMB and MIPS16 architectures. The code 
density of the EISC is 6.5% higher than the ARM THUMB 
and 11.5% higher than the MIPS16. This is a considerable 
improvement in two aspects. First, the EISC core can save a 
large portion of the fetch-related power consumption. Second, 
the EISC core and its program memory can be integrated into a 
smaller die. In addition, the EISC architecture reduces its data 
memory access rate by fully utilizing its 16 registers. The data 
memory access rate of the EISC is 35.1% less than that of the 
ARM T HUMB and 37.6% less than that of MIPS16 [4]. Thus, 
the EISC can reduce both instruction references and data 
references. Reducing the memory accesses would bring 
reduction in power consumption related to the memory 
accesses and also lessen the performance degradation caused 
by the speed gap between the processor and the memory. 
Moreover, the EISC-based system can be implemented in a 
smaller die, because the memory circuit can be made smaller. 

III. Microarchitecture 

The AE32000B core uses a simple 5-stage scalar pipeline 
(Fig. 1). The five stages are instruction fetch (IF), instruction 
decode (ID), execution (EX), memory access (MEM), and 
write-back (WB) stages. 

1. Instruction Fetch and LERI Instruction Folding 

The AE32000B core has an eight-entry instruction queue 
between the IF stage and the ID stage. The instruction queue 
decouples the instruction fetch stage and the execution portion 
(ID, EX, MEM, WB) of the pipeline. Instructions are 
prefetched into the instruction queue to minimize the number 
of the pipeline stalls caused by instruction cache misses. In 
addition, the AE32000B uses the queue to fold in LERI 
instructions. 
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Fig. 1. Microarchitecture of the AE32000B core. 
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Fig. 2. An entry of the instruction queue.  
 

Figure 2 shows the structure of each entry of the instruction 
queue. It consists of a valid bit, a LERI checking bit, an 
information field to indicate whether an interrupt occurred 
during an access to the instruction memory, and an instruction. 
A prefetched instruction is predecoded to determine whether it 
is a LERI instruction. The LERI instruction folding unit fetches 

up to four valid instructions from the instruction queue. Then, 
by checking the isLERI field, this unit checks whether and 
where non-LERI instructions exist. If any valid non-LERI 
instruction exists among the fetched instructions, the folding 
unit sends a non-LERI instruction to the instruction register and 
extends the LERI instructions to the extension register. This 
unit also checks the int_info field for generating the requested 
exceptions. 

2. DSP Features 

As the need of signal processing grows, many 32-bit 
embedded microprocessors tend to be equipped with DSP 
functions. Many DSP algorithms perform multiply and 
accumulation operations intensively [14]. To accelerate the 
operation, the AE32000B core has a powerful MAC operation 
unit that can process a MAC operation (32×32+64=64) in a 
single cycle. The MAC unit can also be used for a multiply 
operation (32×32=64). Moreover, the core is equipped with a 
32-bit barrel shifter and a leading one/zero counter. With this 
DSP functionality, the AE32000B core can process DSP 
applications efficiently without an additional coprocessor. 

3. Debugging Capability 

In order to debug an SoC system, it is sometimes necessary 
but difficult to watch the internal state of the embedded 
microprocessor in the system. Over the past few years, a 
number of studies have been carried out on the method of 
debugging embedded microprocessor cores. A common 
approach is to use an in-circuit-emulator (or ICE breaker), for 
which an extra processor emulates the embedded 
microprocessor. The use of an expensive ICE breaker increases 
the overall verification cost. Hence, currently, some 
microprocessors are integrated in a chip with an ICE unit such 
as the background debug mode debugger [9]. This approach 
can decrease the cost of the verification phase but increases the 
cost of the chip itself. 

The AE32000B has a special operation mode, called the on-
silicon ICE (OSI)) mode, to inexpensively provide debugging 
capability. In the OSI mode, the debugger of the AE32000B 
can access the internal registers including special purpose 
registers. 

The OSI module can be implemented in the system 
coprocessor called the coprocessor 0 (CP0). This unit is 
comprised of simple comparators, registers, and a 
communication port. The OSI breaker module can trace up to 
eight breakpoints or watchpoints. The breaker module 
monitors the addresses accessed during the instruction fetch 
stage and the data memory access stage, and it generates a 
proper break exception if any break condition is met. When the 
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core detects a break exception, it switches its operating mode to 
the OSI mode to activate the debugging capability. The OSI 
module can be configured to use a parallel port or a serial port 
to communicate with the host computer that is used for 
debugging the system remotely. 

4. Coprocessor Interface 

The coprocessor interface of the AE32000B is a passive one. 
Figure 3 shows the coprocessor interface for the AE32000B. 
The cpctrl signal is used to identify the operation of the 
coprocessor. There are four types of instructions for the 
coprocessor interface: the instructions for specifying 
commands to the coprocessors, the instructions for directing 
data transfer between the AE32000B and a coprocessor, the 
instructions for directing data transfer between a coprocessor 
and a memory (under the control of the AE32000B), and the 
instructions for polling. 
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Fig. 3. Coprocessor interface.  
 

In order to send a coprocessor instruction to a coprocessor, 
the AE32000B must fetch the instruction from the instruction 
memory and feed it to the coprocessor, since the coprocessor is 
a passive device. A coprocessor instruction is encapsulated in 
the CPCMDn instruction. The width of the coprocessor 
instruction can be up to 32 bits. 

During the data transfer operation between the AE32000B 
and a coprocessor, the pipeline of the coprocessor is 
synchronized with the pipeline of the AE32000B to avoid 
structural hazards. The coprocessor uses the id_cpbusy signal 
to stall the pipeline in the core. 

All the memory access operations of the coprocessor are 
managed by the AE32000B. When the core decodes an LDCn 
or an STCn instruction, it sends a synchronization request to the 

coprocessor. The coprocessor detects hazards about the 
destination (source) register and determines whether it has to 
send the id_cpbusy signal to the AE32000B. In the MEM stage, 
the AE32000B sends the mem_cpacc signal as a 
synchronization request and controls the memory bus to access 
the memory. Then, the coprocessor sends the mem_cpbusy 
signal to the microprocessor as an acknowledgement to 
complete the memory access operation. If a wider bus is 
needed in a coprocessor, the cpbus_in bus and the cpubs_out 
bus can be connected to the coprocessor. 

Sometimes a coprocessor operates independently to increase 
the overall performance. The coprocessor commands are 
passed to the coprocessor in the ID stage. Then, the 
coprocessor can run without stalling the pipeline in the 
AE32000B. Two methods can be used for checking results:  
polling and interrupts. In order to support polling, the 
AE32000B has two instructions: GETCn and EXECn. The 
former modifies the zero flag in the AE32000B by setting a 
specific status bit in the coprocessor. The latter generates 
coprocessor exceptions. In order to generate an interrupt, the 
coprocessor sends the exception information to the external 
interrupt controller, which then can also be used to check the 
completion of an operation. 

Another synchronization issue in the coprocessor interface is 
how to handle the exception on the microprocessor when the 
coprocessor runs independently. For this purpose, we use the 
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cpactive signal. The AE32000B cannot enter the exception 
state for interrupts when cpactive is asserted. Some exceptions 
of higher priority can abort the operation in the coprocessor to 
initiate the exception handling routine. 

IV. Verification 

In order to verify the functionality and the synthesizability of 
the designed AE32000B core, we used three verification 
techniques. First, we used a static code checking method, 
called Lint, to detect syntax error and coding misses in the early 
stage. Second, we used a focused method by using a set of test 
vectors based on a sophisticated checklist. Lastly, we used a 
random checking with a constrained random vector generator. 

1. Lint Checking 

Lint is a static code checking method [2]. In the design of the 
AE32000B, the lint method was widely used in the early 
design stage to check syntax errors and frequently occurring 
coding misses such as inconsistencies in assign statements or 
port widths. Moreover, we used the lint method to check RTL 
coding style, as specified in [2] and [10], to increase reusability 
and synthesizability. A good coding style reduces coding 
misses and improves the quality of the design. As a result, we 
were able to detect many errors in the early design stage and 
make the AE32000B model consistent in coding style. It made 
our code easy to verify and modify. 

2. Focused Test 

In the functional verification phase, we used a focused test 
[1]. Since the quality of the test vectors in this test closely 
depends on the test engineer’s intention, we developed a 
sophisticated checklist, based on the specification and the bug 
list from the previous project. We also added some self-
checking codes to reduce verification efforts. 

3. Constrained Random Test 

Random checking, commonly used for verifying the 
functionality of cores, can check the corner cases that are hard 
to find by the focused test. The drawback to random checking 
methods is that they need many test vectors to achieve the 
target coverage [11]. Thus, an automated checking method is 
needed in the random test. We decided to use an instruction-
based test vector that examines the instruction specification 
and the constraints of memory accesses. Thus, we developed 
an in-house constrained random vector generator for the 
AE32000B. 

The whole verification flow of the constrained random test is 

described in Fig. 4. The random vector generator makes the test 
vectors in .C files. The generator can confine the memory 
access range and the sequence of instructions to avoid 
unwanted (prevented in the specification) situations, such as 
the breakdown of a stack area. The generated test vector is 
included in an in-line assembly code and has a self-checking 
code. To support automated verification, we used a cycle 
accurate C simulator, called the ESCAsim, as a reference 
model. We fed the compiled test vectors to both the Verilog 
RTL model and ESCAsim. Both the Verilog simulator and 
ESCAsim trace the contents of the program counter during the 
runs. We compared the results to verify the correctness of the 
Verilog model. We also detected some errors by using self-
checking code in the test vectors. 

V. Performance Estimation 

1. Impact of LERI Folding 

In this section, we present the impact of the LERI instruction 
folding on the performance of the designed core. First, we 
compiled the Dhrystone 2.1 benchmark and the quicksort 
program to see the frequency of the LERI instructions. The 
frequency of the LERI instructions was closely related to the 
offset length and the size of immediate values. From our 
experiment, we found that the frequency was about 11.2% in 
the compiled programs. 
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Fig. 6. IPCs of Dhrystone 2.1 for the AE32000B core and other
embedded cores under a perfect memory system 
environment (50 MHz normalized, zero-wait memory system).
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The impact of the LERI folding is summarized in Fig. 5. 
Without the LERI instruction-folding unit, the average IPC 
count is about 0.76, while it is about 0.82 with the LERI 
folding unit. The designed LERI folding unit can fold and hide 
about 92% of the LERI instructions and increase the IPC count 
by about 7.9%. 

The cost effectiveness is more important in the embedded 
market. We synthesized the LERI instruction-folding unit using 
a 0.35-µm static CMOS standard cell library and found that the 
unit can be implemented with about 1900 gates, which is only 
4% of the whole AE32000B. 

2. Performance 

In order to compare the performance of the AE32000B with 
those of other microprocessors, we use the Dhrystone 2.1 
benchmark, which is widely used for embedded processors. 
We compiled the benchmark using a GNU C compiler for the 
AE32000B, called the ae32000-elf-gcc, with a –O2 optimization 
option. The IPC of the Dhrystone 2.1 benchmark for the 
designed core was about 0.86, which we normalized for 50 
MHz, to compare it with those for other processors and 
compared to those for other processors in million instructions 
per second (MIPS) metric [12]. These results are derived under 

perfect memory configuration (a zero-wait memory system). 
The result is summarized in Fig. 6. 

3. Synthesis Results 

In order to verify the synthesizability of our design and to 
suggest its operation frequency and area guideline, we 
synthesized the design core using two target libraries: a static 
0.35-µm CMOS standard library (STD90) by Samsung 
Electronics and a static 0.18-µm CMOS standard cell library 
(sb18os120_anam) by Avanti. We compiled the designed the 
AE32000B core using a Synopsys synthesis and optimization 
tool [13]. Table 1 shows the results of the synthesis and the 
simulation with the worst case condition—slow process, 125 
OC junction temperature, and 10% lower supply voltage than 
the normal condition. Under the best case condition, our design 
could operate at 280 MHz with 1.98 V in the 0.18-µm process. 
 

Table 1. Operation frequency and implementation cost. 

Technology 
Operation 
frequency 

Gate usage 

0.18 µm 
Higher than 
120 MHz 

Less than 
53,000 Gates 

0.35 µm 
Higher than 

70 MHz 
Less than 

47,000 Gates 

  

VI. Conclusions 

This paper presented a 32-bit fully synthesizable 
microprocessor core called the AE32000B. This 
microprocessor has high code density and low memory access 
rate. It has some unique features: the LERI folding method for 
improving performance and the OSI for debugging internal 
status. It also has DSP functionality, which can be used in 
various DSP applications. The AE32000B has an efficient 
coprocessor interface to support various coprocessors. 

Our experimental results showed that the LERI folding unit 
considerably improves performance. Analysis of the Dhrystone 
2.1 benchmark showed that the AE32000B achieved an IPC 
count of about 0.86. This result demonstrates that the 
performance of the AE32000B is above middle range in the 
embedded market. In the synthesis result, the AE32000B can 
operate higher than 120 MHz in 0.18 µm and higher than 70 
MHz in 0.35 µm. It uses about 47,000 to 53,000 gates in the 
implementation. 

In the design of the AE32000B, we focused on increasing 
IPC count with a small die size. Hence, operating frequency 
was a little slower than competitors, but we believe the overall 



ETRI Journal, Volume 25, Number 5, October 2003  Hyun-Gyu Kim et al.   343 

performance of the AE32000B outperforms competitors. 
ADChips, Inc. plans to use the new synthesizable core using 
the “speed-demon” approach to achieve higher operation 
frequency. 
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