• Title/Summary/Keyword: Embedded Power Control

Search Result 277, Processing Time 0.024 seconds

Compression-Friendly Low Power Test Application Based on Scan Slices Reusing

  • Wang, Weizheng;Wang, JinCheng;Cai, Shuo;Su, Wei;Xiang, Lingyun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.463-469
    • /
    • 2016
  • This paper presents a compression-friendly low power test scheme in EDT environment. The proposed approach exploits scan slices reusing to reduce the switching activity during shifting for test scheme based on linear decompressor. To avoid the impact on encoding efficiency from resulting control data, a counter is utilized to generate control signals. Experimental results obtained for some larger ISCAS'89 and ITC'99 benchmark circuits illustrate that the proposed test application scheme can improve significantly the encoding efficiency of linear decompressor.

Efficient Power Reduction Technique of LiDAR Sensor for Controlling Detection Accuracy Based on Vehicle Speed (차량 속도 기반 정확도 제어를 통한 차량용 LiDAR 센서의 효율적 전력 절감 기법)

  • Lee, Sanghoon;Lee, Dongkyu;Choi, Pyung;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.215-225
    • /
    • 2020
  • Light detection and ranging (LiDAR) sensors detect the distance of the surrounding environment and objects. Conventional LiDAR sensors require a certain amount of a power because they detect objects by transmitting lasers at a regular interval depending on a constant resolution. The constant power consumption from operating multiple LiDAR sensors is detrimental to autonomous and electric vehicles using battery power. In this paper, we propose two algorithms that improve the inefficient power consumption during the constant operation of LiDAR sensors. LiDAR sensors with algorithms efficiently reduce the power consumption in two ways: (a) controlling the resolution to vary the laser transmission period (TP) of a laser diode (LD) depending on the vehicle's speed and (b) reducing the static power consumption using a sleep mode depending on the surrounding environment. A proposed LiDAR sensor with a resolution control algorithm reduces the power consumption of the LD by 6.92% to 32.43% depending on the vehicle's speed, compared to the maximum number of laser transmissions (Nx·max). The sleep mode with a surrounding environment-sensing algorithm reduces the power consumption by 61.09%. The proposed LiDAR sensor has a risk factor for 4-cycles that does not detect objects in the sleep mode, but we consider it to be negligible because it immediately switches to an active mode when a change in surrounding conditions occurs. The proposed LiDAR sensor was tested on a commercial processor chip with the algorithm controlling the resolution according to the vehicle's speed and the surrounding environment.

Development of Digital controller for emergency power generating system Using Micro-Controller (마이크로컨트롤러를 이용한 비상발전계통의 제어장치 개발)

  • Jeong, Eull-Gi;Jeon, Hee-Jong;Shon, Jin-Geun;Na, Chae-Dong;Lee, Seong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.100-102
    • /
    • 2001
  • This paper resents digital controller of emergency power generator system. The controller offers an integrated alternative for Genset control, metering and remote monitoring. Proposed controller used 80c196kc one chip microprocessor for digital control, it measures parameters of generator and provides output signals to control starting and stopping of generator. Additionally protection and alarm functions are considered to system stability. As almost parts of controller are embedded by digital microprocessor and FPGA techniques, the controller has a more flexible feature and an improvement of precision. The developed system has a big merit economically and is suitable for any kW size generator.

  • PDF

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

Design and Fabrication of Low Power Sensor Network Platform for Ubiquitous Health Care

  • Lee, Young-Dong;Jeong, Do-Un;Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1826-1829
    • /
    • 2005
  • Recent advancement in wireless communications and electronics has enabled the development of low power sensor network. Wireless sensor network are often used in remote monitoring control applications, health care, security and environmental monitoring. Wireless sensor networks are an emerging technology consisting of small, low-power, and low-cost devices that integrate limited computation, sensing, and radio communication capabilities. Sensor network platform for health care has been designed, fabricated and tested. This system consists of an embedded micro-controller, Radio Frequency (RF) transceiver, power management, I/O expansion, and serial communication (RS-232). The hardware platform uses Atmel ATmega128L 8-bit ultra low power RISC processor with 128KB flash memory as the program memory and 4KB SRAM as the data memory. The radio transceiver (Chipcon CC1000) operates in the ISM band at 433MHz or 916MHz with a maximum data rate of 76.8kbps. Also, the indoor radio range is approximately 20-30m. When many sensors have to communicate with the controller, standard communication interfaces such as Serial Peripheral Interface (SPI) or Integrated Circuit ($I^{2}C$) allow sharing a single communication bus. With its low power, the smallest and low cost design, the wireless sensor network system and wireless sensing electronics to collect health-related information of human vitality and main physiological parameters (ECG, Temperature, Perspiration, Blood Pressure and some more vitality parameters, etc.)

  • PDF

The Feed-forward Controller and Notch Filter Design of Single-Phase Photovoltaic Power Conditioning System for Current Ripple Mitigation (단상 PVPCS 출력 전류의 리플 개선을 위한 노치 필터 및 피드 포워드 제어기 설계)

  • Kim, Seung-Min;Yang, Seung-Dae;Choi, Ju-Yeop;Choy, Ick;Lee, Young-Gwon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.325-330
    • /
    • 2012
  • A single-phase PVPCS(photovoltaic power conditioning system) that contains a single phase dc-ac inverter tends to draw an ac ripple current at twice the out frequency. Such a ripple current may shorten passive elements life span and worsen output current THD. As a result, it may reduce the efficiency of the whole PVPCS system. In this paper, the ripple current propagation is analyzed, and two methods to reduce the ripple current are proposed. Firslyt, this paper presents notch filter with IP voltage controller to reject specific current ripple in single-phase PVPCS. The notch filter can be designed that suppress just only specific frequency component and no phase delay. The proposed notch filter can suppress output command signal in the ripple bandwidth for reducing output current THD. Secondly, for reducing specific current ripple, the other method is feed-forward compensation to incorporate a current control loop in the dc-dc converter. The proposed notch filter and feed-forward compensation method have been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control scheme.

  • PDF

The Design and Implementation of Internet Outlet with Multiple User Interface Using TCP/IP Processor (TCP/IP프로세서를 이용한 다중 사용자 인터페이스 지원 인터넷 전원 콘센트의 설계 및 구현)

  • Baek, Jeong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.103-112
    • /
    • 2012
  • Recently, the infrastructure to be connected to the internet is much provided, there is more and more need to connect electric or electronic products to the internet to monitor or control them remotely. However, most of the existing products lack the network interface, so it was very inconvenient to be connected to the internet. Therefore, this article designs and realizes the internet outlet allowing real-time scheduling that can control the power remotely on the internet by using the hardware TCP/IP processor. The realized product consumes low production cost because it can be realized by using the hardware TCP/IP processor and the 8-bit small microprocessor. In addition, the product can be used widely in both wired and wireless environments with a variety of user interface, including the dedicated control program which provides the environment configuration functions; embedded web service that enables the webpage to be saved on the external flash memory; Android smartphone application; motion recognition control environment that uses the OpenCV computer vision library, etc.

Power output and efficiency of a negative capacitance and inductance shunt for structural vibration control under broadband excitation

  • Qureshi, Ehtesham Mustafa;Shen, Xing;Chang, Lulu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.223-246
    • /
    • 2015
  • Structural vibration control using a piezoelectric shunt is an established control technique. This technique involves connecting a piezoelectric patch, which is bonded onto or embedded into the vibrating structure, to an electric shunt circuit. Thus, vibration energy is converted into electrical energy and is dissipated through a network of electrical components. Different configurations of shunt have been researched, among which the negative capacitance-inductance shunt has gained prominence recently. It is basically an analog, active circuit consisting of operational amplifiers and passive elements to introduce real and imaginary impedance on the vibrating structure. The present study attempts to model the behavior of a negative capacitance-inductance shunt in terms of power output and efficiency using circuit modeling software. The shunt model is validated experimentally and is used to control the structural vibration of an aluminum beam, connected to a pair of piezoelectric patches, under broadband excitation. The model is also used to determine the optimal parameters of a negative capacitance-inductance shunt to increase the efficiency and predict the voltage output limit of op-amp against the supply voltage.

Study on Steady State Analysis of High Power Three-Phase Transformer using Time-Stepping Finite Element Method (시간차분 유한요소법을 이용한 대용량 삼상 변압기의 정상상태 해석에 관한 연구)

  • Yoon, Hee-Sung;Seo, Min-Kyu;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1123-1129
    • /
    • 2012
  • This paper presents the fast steady state analysis using time-stepping finite element method for a high power three-phase transformer. The high power transformer spends huge computational cost of the time-stepping finite element method. It is because that the high power transformer requires a lot of time to reach steady state by its large inductance component. In order to reduce computational cost, in this paper, the adaptive time-step control algorithm combined with the embedded 2nd 4th singly diagonally implicit Runge-Kutta method and the analysis strategy using variation of the winding resistance are studied, and their numerical results are compared with those from the typical time-stepping finite element method.

The Development of the Home Control System with the OSGi

  • Kim, Hee-Sun;;Lee, Chang-Goo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.912-916
    • /
    • 2004
  • The home network is the technique to guarantee a safe, economical, socially integrated, and healthy life to the family and it provides domestic safety, instrument control, controllable energy and health monitoring by the connection of the home appliances using wired and wireless networks. A home control system has been developed for managing and controlling home appliances. This paper designs the broadband PLC home controller using broadband PLC technology which can save much cost at a network infrastructure using the existing power line at a home and design the USB home controller using USB technology which is low cost and has many goods with it. And the embedded home server manages those. The CDMA module provides mobile functions to the home control system in this paper. And we choose the OSGi specification which is compatible with other home middleware and can accept various communication techniques of home network

  • PDF