• Title/Summary/Keyword: Elliptic Model

Search Result 176, Processing Time 0.024 seconds

Prediction of Stratified Turbulent Channel Flows with an Second Moment Model Using the Elliptic Equations (타원 방정식을 사용하는 2차모멘트 모형에 의한 성층된 난류 평판유동의 예측)

  • Shin, Jong-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.831-841
    • /
    • 2007
  • This work is to extend the elliptic operator, which has been already adopted in turbulent stress model, to fully developed turbulent buoyant channel flows with changing the orientation of the buoyancy vector to be perpendicular to the channel walls. The turbulent heat flux models based on the elliptic concept are employed and closely linked to the elliptic blending second moment closure which is used for the prediction of Reynolds stresses. In order to reflect the stable or unstable stratification conditions, the present model introduces the gradient Richardson number into the thermal to mechanical time scale ratio and model coefficients. The present model has been applied for the computation of stably and unstably stratified turbulent channel flows and the prediction results are directly compared to the DNS data.

EVALUATION OF ELLIPTIC BLENDING MODEL (Elliptic Blending Model의 평가)

  • Choi Seok-Ki;Kim Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.105-110
    • /
    • 2005
  • Evaluation of elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor by applying them to the experiment conducted at JNC. The algebraic flux model is used for treating the turbulent heat flux. There exist much differences between turbulence models in predicting the temporal variation of temperature. The V2-F model and the EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

A New Lagrangian Stochastic Model for Prediction of Particle Dispersion in Turbulent Boundary Layer Flow (경계층 유동에서 입자확산의 예측을 위한 라그랑지안 확률모델)

  • Kim, Byung-Gu;Lee, Chang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1851-1856
    • /
    • 2003
  • A new Lagrangian stochastic dispersion model is developed by combining the GLM(generalized Langevin model) and the elliptic relaxation method. Under the physically plausible assumptions a simple analytical solution of elliptic relaxation is obtained. To compare the performance of our model with other model, the statistics of particle velocity as well as concentration are investigated. Numerical simulation results show good agreement with available experimental data.

  • PDF

COMPUTATION OF TURBULENT NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (타원혼합 이차모멘트 모델을 사용한 난류 자연대류 해석)

  • Choi, S.K.;Han, J.W.;Kim, S.O.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.102-111
    • /
    • 2016
  • In this paper a computation of turbulent natural convection in enclosures with the elliptic-blending based differential and algebraic flux models is presented. The primary emphasis of the study is placed on an investigation of accuracy of the treatment of turbulent heat fluxes with the elliptic-blending second-moment closure for the turbulent natural convection flows. The turbulent heat fluxes in this study are treated by the elliptic-blending based algebraic and differential flux models. The previous turbulence model constants are adjusted to produce accurate solutions. The proposed models are applied to the prediction of turbulent natural convections in a 1:5 rectangular cavity and in a square cavity with conducting top and bottom walls, which are commonly used for validation of the turbulence models. The relative performance between the algebraic and differential flux model is examined through comparing with experimental data. It is shown that both the elliptic-blending based models predict well the mean velocity and temperature, thereby the wall shear stress and Nusselt number. It is also shown that the elliptic-blending based algebraic flux model produces solutions which are as accurate as those by the differential flux model.

Modeling of Turbulent Heat Transfer in an Axially Rotating Pipe Flow (축을 중심으로 회전하는 관유동에서 난류열전달의 모형화)

  • Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.9
    • /
    • pp.741-753
    • /
    • 2007
  • The elliptic conceptual second moment model for turbulent heat fluxes, which was proposed on the basis of elliptic-relaxation equation, was applied to calculate the turbulent heat transfer in an axially rotating pipe flow. The model was closely linked to the elliptic blending model which was used for the prediction of Reynolds stress. The effects of rotation on the turbulent characteristics including the mean velocity, the Reynolds stress tensor, the mean temperature and the turbulent heat flux vector were examined by the model. The numerical results by the present model were directly compared to the DNS as well as the experimental results to assess the performance of the model predictions and showed that the behaviors of the turbulent heat transfer in the axially rotating pipe flow were satisfactorily captured by the present models.

EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRATIFICATION (열성층 해석 난류모델 평가)

  • Cho, Seok-Ki;Kim, Se-Yun;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.12-17
    • /
    • 2005
  • A computational study of evaluation of current turbulence models is performed for a better prediction of thermal stratification in an upper plenum of a liquid metal reactor. The turbulence models tested in the present study are the two-layer model, the shear stress transport (SST) model, the v2-f model and the elliptic blending mode(EBM). The performances of the turbulence models are evaluated by applying them to the thermal stratification experiment conducted at JNC (Japan Nuclear Corporation). The algebraic flux model is used for treating the turbulent heat flux for the two-layer model and the SST model, and there exist little differences between the two turbulence models in predicting the temporal variation of temperature. The v2-f model and the elliptic blending model better predict the steep gradient of temperature at the interface of thermal stratification, and the v2-f model and elliptic blending model predict properly the oscillation of the ensemble-averaged temperature. In general the overall performance of the elliptic blending model is better than the v2-f model in the prediction of the amplitude and frequency of the temperature oscillation.

COMPUTATION OF NATURAL CONVECTION AND THERMAL STRATIFICATION USING THE ELLIPTIC BLENDING MODEL (Ellipting Blending Model에 의한 자연대류 및 열성층 해석)

  • Choi, Seok-Ki;Kim, Seong-O
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.77-82
    • /
    • 2006
  • Evaluation of the elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of natural convection and thermal stratification. For a natural convection problem the models are applied to the prediction of a natural convection in a rectangular cavity and the computed results are compared with the experimental data. It is shown that the elliptic blending model predicts as good as or better than the existing second moment differential stress and flux model for the mean velocity and turbulent quantities. For thermal stratification problem the models are applied to the thermal stratification in the upper plenum of liquid metal reactor. In this analysis there exist much differences between the turbulence models in predicting the temporal variation of temperature. The V2-F model and EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

AN EFFICIENT AND SECURE STRONG DESIGNATED VERIFIER SIGNATURE SCHEME WITHOUT BILINEAR PAIRINGS

  • Islam, Sk Hafizul;Biswas, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.425-441
    • /
    • 2013
  • In literature, several strong designated verifier signature (SDVS) schemes have been devised using elliptic curve bilinear pairing and map-topoint (MTP) hash function. The bilinear pairing requires a super-singular elliptic curve group having large number of elements and the relative computation cost of it is approximately two to three times higher than that of elliptic curve point multiplication, which indicates that bilinear pairing is an expensive operation. Moreover, the MTP function, which maps a user identity into an elliptic curve point, is more expensive than an elliptic curve scalar point multiplication. Hence, the SDVS schemes from bilinear pairing and MTP hash function are not efficient in real environments. Thus, a cost-efficient SDVS scheme using elliptic curve cryptography with pairingfree operation is proposed in this paper that instead of MTP hash function uses a general cryptographic hash function. The security analysis shows that our scheme is secure in the random oracle model with the hardness assumption of CDH problem. In addition, the formal security validation of the proposed scheme is done using AVISPA tool (Automated Validation of Internet Security Protocols and Applications) that demonstrated that our scheme is unforgeable against passive and active attacks. Our scheme also satisfies the different properties of an SDVS scheme including strongness, source hiding, non-transferability and unforgeability. The comparison of our scheme with others are given, which shows that it outperforms in terms of security, computation cost and bandwidth requirement.

EC-SRP Protocol ; Elliptic Curve Secure Remote Password Protocol (타원곡선을 이용한 안전한 패스워드 프로토콜)

  • 이용기;이정규
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.9 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • In this paper, we propose an EC-SRP(Elliptic Curve - Secure Remote Password) protocol that uses ECDLP(Elliptic Curve Discrete Logarithm Problem) instead SRP protocols’s DLP. Since EC-SRP uses ECDLP, it inherits the high performance and security those are the properties of elliptic curve. And we reduced the number of elliptic curve scalar multiplication to improve EC-SRP protocol’s performance. Also we have proved BC-SRP protocol is a secure AKC(Authenticated Key Agreement with Key Confirmation) protocol in a random oracle model.

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.