• Title/Summary/Keyword: Elevated $CO_2$

Search Result 489, Processing Time 0.022 seconds

Reduction of CO2 Fertilization due to Progressive Nitrogen Limitation - Physiological Changes of Four Native Tree Species Growing under Elevated CO2 for 8 years using Open-Top Chamber (점진적 질소 제한으로 인한 이산화탄소 시비효과 감소 - 상부개방형 온실을 이용한 고농도의 이산화탄소 하에서의 우리나라 대표 수종들의 생리적 변화)

  • Song, Wookyung;Byeon, Siyeon;Lee, HoonTaek;Lee, Minsu;Lim, Hyemin;Kim, Hyun Seok
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2018.06a
    • /
    • pp.77-78
    • /
    • 2018
  • PDF

Application of Glucuronic Acid with New Cosmetic Active Ingredient (새로운 노화 방지 성분으로서 글루쿠로닉 애씨드의 기능과 화장품 응용)

  • Lee Geun-Soo;Kim Jin-Wha;Lee Chun-Il;Pyo Hyeong-Bae;Lee Kong-Joo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.471-477
    • /
    • 2004
  • Exposure to elevated temperatures, chemical (active oxigen), or physical stress (UV light) induces immediate physiological response, the expression of heat shock proteins in cells. Thus, cells with elevated Heat Shock Protein levels become more tolerant to stress conditions that are otherwise lethal. First, we studied on the new function of glucuronic acid (GA) as preventive material of skin aging. The application of the GA shows significant induction of Heat Shock Protein 70 kDa (HSP 70 kDa) in contrast to cells without it. GA at the concentration which can induce HSP 70 kDa, protects the cell death induced by second stress (heat shock and hydrogen peroxide) in NIH3T3 cells. Second, we studied on in vitro transdermal permeation characteristic of GA through the excised mouse skin. In this study, we compared the skin permeability of GA in water with O/W emulsion. As a result, skin permeation parameters of GA shows lag time 1.2 h, partition coefficient 0.114, permeation flult rate $0.83114 mg/cm^2/h.$ In case of lag time, O/W emulsion containing GA increase 2.48 h. Also, the total accumulation permeation content decreased in contrast to GA solution after 24 h. But it has long-term permeability of glucuronic acid. These results suggest that glucuronic acid could be a good cosmetic active ingredient.

Enhanced Cycle Performance of Bi-layer Structured LMO-NCM Positive Electrode at Elevated Temperature (겹층구조의 LMO-NCM 복합양극을 통한 고온 사이클 수명개선 연구)

  • Yoo, Seong Tae;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.184-190
    • /
    • 2022
  • Spinel LiMn2O4 (LMO) and layered LiNi0.5Co0.2Mn0.3O2 (NCM) are widely used as positive electrode materials for lithium-ion batteries. LMO and NCM positive electrode materials have a complementary properties. LMO has low cost and high safety and NCM materials show a relatively high specific capacity and better cycle life even at elevated temperature. Therefore, the LMO and NCM active materials are blended and used as a positive electrode in large-size batteries for electric vehicles (xEV). In this study, the cycle performance of a blended electrode prepared by simply mixing LMO and NCM and a bi-layer electrode in which two electrode layers aree sequentially coated are compared. The bi-layer electrode prepared by composing the same ratio of both active materials has similar capacity and cycle performance to the blend electrode. However, the LN electrode coated with LMO first and then NCM is the best in the full cell cycle performance at elevated temperature, and the NL electrode, in which NCM is first coated with LMO has a faster capacity degradation than the blended electrode because LMO is mainly located on the top of the electrode adjacent to electrolyte and graphite negative electrode. Also, the LSTA (linear sweep thermmametry) analysis results show that the LN bi-layer electrode in which the LMO is located inside the electrode has good thermal stability.

Development of High-Toughness Concrete Using the Mixed Materials for CO2 Reduction (CO2 저감용 혼합재를 사용한 고인성 콘크리트의 개발)

  • Yi, Seong Tae;Heo, Hyung Seok;Noh, Jae Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.89-96
    • /
    • 2013
  • Now-a-days, a manhole adopted since the late 1990s and produced using the polymer concrete has widely used due to the various benefits. While entering the High oil prices times, however, and with the price increase of the petrochemical materials, the cost of manufacture of polymer concrete was elevated and the resulting polymer concrete's weakness is being put on. Accordingly, the development of economic cement concrete manholes, which can replace the outstanding bending strength of manhole made of high-price polymer concrete, has been required. In this study, based on the cement technology of fast hardening armorphous calcium aluminate (ACA), by minimizing the amount of cement using the industrial byproducts, to develop the eco-friendly high-toughness concrete manhole, which can reduce $CO_2$ reduction, was intended. As the results, the cement concrete manhole, which economic, eco-friend, and meeting the performance requirements, was developed.

Improvement of Post-combustion CO2 Capture Process using Mechanical Vapor Recompression (기기적 증기 재압축 시스템을 적용한 연소 후 이산화탄소 포집공정 개선 연구)

  • Jeong, Yeong Su;Jung, Jaeheum;Han, Chonghun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • In order to reduce the anthropogenic emission of greenhouse gases, CCS technology has emerged as the most promising and practical solution. Among CCS technology, post-combustion $CO_2$ capture is known as the most mature and effective process to remove $CO_2$ from power plant, but its energy consumption for chemical solvent regeneration still remains as an obstacle for commercialization. In this study, a process alternative integrating $CO_2$ capture with compression process is proposed which not only reduces the amount of thermal energy required for solvent regeneration but also produces $CO_2$ at an elevated pressure.

Anti-inflammatory Effect of Biotin and Plant extracts

  • Y. J. Joo;S. W. Jung;Kim, B. R.;Kim, I. Y.;Lee, J. D.;H. C. Ryoo;Lee, S. H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.601-610
    • /
    • 2003
  • Biotin is a water-soluble vitamin used as a skin conditioning agent and promotes the formation of intercellular lipid layers through increased lipid synthesis, which improves the skin's natural barrier function. The anti-inflammatory effects of biotin have been investigated using in vitro assay models, such as MTT assay, measurements of concentrations of nitric oxide(NO), prostaglandin E2(PGE$_2$), and inhibition rate of 5-lipoxygenase(5-LOX). In comparison with biotin, other plant extracts were tested at the same time which were kudzu vine extract, sage extract, paeonia extract, and dipotassium glycyrrhetinate. Nitric oxide is a signal molecule with functions such as neurotransmission, local vascular relaxation, and anti-inflammation in many physiological and pathological processes. NO can cause apoptosis and necrosis of target cells such as keratinocytes and is generated from L-arginine by nitric oxide synthase (NOS). Prostanoids, including prostaglandins and thromboxanes, are generated by the phospholipase $A_2$/cyclooxygenase(COX) pathway, and leukotrienes are generated by the 5-lipoxygenase pathway from arachidonic acid. Prostaglandin E2 recently have been shown to be beneficial in the resolution of tissue injury and inflammation, also has been implicated as an immunosuppressive agent and plasma levels of PGE$_2$ are elevated in patients sustaining thermal injury. Lipoxygenase metabolites from arachidonic acid have been implicated in inflammation, anti-inflammatory activity of the raw materials was evaluated in vitro by the offered inhibition of lipoxygenase.

  • PDF

Effect of heat treatment and sintered microstructure on electrical properties of Mn-Co-Ni oxide NTC thermistor for fuel level sensor (연료액위센서용 Mn-Co-Ni 산화물계 서미스터의 전기적 특성에 미치는 열처리 및 소결미세구조에 관한 연구)

  • 나은상;백운규;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The correlationship between heat treatment condition and electrical properties of the Mn-Co-Ni oxide NTC thermistor for fuel level sensor was investigated by the X-ray diffractometry, density measurement, and electrical properties measurement such as resistivity, B constant, and thermal dissipation constant. It was shown that the heat treatment of NTC thermistor was responsible for sinterability of Mn-Co-Ni oxide. The highest density of 5.10 g/㎤ was obtained at $1250^{\circ}C$, 2 hours, at which the densification was almost completed. This is also manifested from the microstructural observation. It is found that the electrical resistivity and B constant are increased at the elevated sintering temperatures. The NTC specimens prepared in this study showed the conventional decrease of resistance with the measured temperature and the linear behavior of output voltage with fuel levels. Therefore, the electrical properties of thermistor were closely correlated with sintering condition. and the Mn-Co-Ni oxide thermistor prepared in this study has a great possibility enough to apply for an automobile fuel level sensor.

Study of Ecological Response of Endangered Sarcandra glabra (Thunb.) Nakai according to Moisture and Nutrient under Condition of Climate Change for Propagation and Restoration (증식 및 복원을 위한 기후변화조건에서 수분과 유기물에 따른 멸종위기식물 죽절초(Sarcandra glabra (Thunb.) Nakai)의 생태적 반응 연구)

  • Lee, Soo-In;Lee, Eung-Pill;Jung, Young-Ho;Kim, Eui-Ju;Lee, Jae-Keun;Lee, Seung-Yeon;Park, Jae-Hoon;Lee, Sang-Hun;You, Young-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.1
    • /
    • pp.30-38
    • /
    • 2018
  • The purpose of this paper is to provide reference data about propagation, restoration, and preparation of policy of endangered Sarcandra glabra (Thunb.) Nakai by investigating growth response and variation of ecological niche breadth according to moisture and nutrient under the condition of elevated $CO_2$ concentration and elevated temperature. We divided the investigation into the controlled group and treated group (elevated $CO_2$ concentration and elevated temperature) and then varied the moisture and nutrient treatment for testing. The results showed that the ecological niche breadth was wide at moisture and nutrient gradients of 0.899 and 0.844, respectively, under control. Also, the ecological niche breadth regarding the moisture and nutrient gradients under treatment simulating global warming was wider as 6.60% and 2.09%, respectively. Therefore, moisture and nutrient will not be the restriction factors concerning the growth of Sarcandra glabra under continued global warming. However, it will be advisable to specify the nutrient content condition in the soil to be 10% for population restoration when growing Sarcandra glabra in the green house which is not affected by external environment since the studies of rearing reaction reported that Sarcandra glabra prefer 10% of nutrient content than 0-5%. Furthermore, it is necessary to protect evergreen broad-leaved forest where is the natural habitat of Sarcandra glabra that has relatively high nutrient content.