• Title/Summary/Keyword: Elemental Powder

Search Result 178, Processing Time 0.028 seconds

Characteristics of Workers' Exposure to Aerosolized Particles during the Production of Carbon Nanotube-enabled Composites (탄소나노튜브 복합체 취급 작업자의 공기 중 입자상 물질 노출 특성)

  • Kwon, Jiwoon;Kim, Sungho;Jang, Miyeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: The purpose of this case study is to assess workers' exposure to carbon nanotubes(CNTs) and characterize particles aerosolized during the process of producing CNT-enabled polytetrafuoroethylene(PTFE) composites at a worksite in Korea. Methods: Personal breathing zone and area samples were collected for determining respirable concentrations of elemental carbon(EC) using NIOSH(National Institute for Occupational Safety and Health) Method 5040. Personal exposure to nano-sized particles was measured as the number concentration and mean diameter using personal ultrafine particle monitors. The number concentration by particle size was measured using optical particle sizers(OPS) and scanning mobility particle sizers(SMPS). Transmission electron microscopy (TEM) area samples were collected on TEM grids and analyzed to characterize the size, morphology, and chemistry of the particles. Results: Respirable EC concentrations ranged from 0.04 to 0.24 ㎍/㎥, which were below 23% of the exposure limit recommended by NIOSH and lower than background concentrations. Number concentrations by particle size measured using OPS and SMPS were not noticeably elevated during CNT-PTFE composite work. Instant increase of number concentrations of nano-sized particles was observed during manual sanding of CNT-PTFE composites. Both number concentrations and mean diameters did not show a statistically significant difference between workers handing CNT-added and not-added materials. TEM analyses revealed the emission of free-standing CNTs and CNT-PTFE aggregate particles from the powder supply task and composite particles embedded with CNTs from the computer numerical control(CNC) machining task with more than tens of micrometers in diameter. No free-standing CNT particles were observed from the CNC machining task. Conclusions: Significant worker exposure to respirable CNTs was not found, but the aerosolization of CNTs and CNT-embedded composite particles were observed during handing of CNT-PTFE powders and CNC machining of CNT-PTFE composites. Considering the limited knowledge on the toxicity of CNTs and CNT composite particles to date, it seems prudent to take a precautionary approach for the protection of workers' health.

Synthesis of Chloroacetamide Compounds and their Herbicidal Activities (Chloroacetamide형(型) 화합물(化合物)의 합성(合成)과 제초활성(除草活性))

  • Hong, Moo-Ki;Jeong, Young-Ho;Oh, Se-Mun
    • Applied Biological Chemistry
    • /
    • v.31 no.3
    • /
    • pp.234-240
    • /
    • 1988
  • Some chloroacetamide derivatives were synthesized from 2,6-dialkyl, aniline 4-chloroaniline, or 3,4-dichloroaniline with alkyl 2-bromopropionate and chloroacetyl chloride and identified by elemental analyses, NMR, and GC/MS spectra as N-(1'-methoxycarbonylethyl)-N-chloroacetyl-2,6-dimethylaniline(ACRI-S-8609), etc. These compounds synthesized were subjected to the test for pre-emergence herbicidal effecs on some grass weeds(Digitaria adscendens, Setaria viridis, Echinochloa crus-galli) and broad leaf weeds(Portulaca oleracea, Amaranthus lividus, Chenopodium album) in pots applied as wettable powder formulations. It was found that N-(1'-ethoxycarbonylethyl)-N-chloroacetyl-2,6-dimethylaniline(ACRI-S-8701) has the highest herbicidal effect on grass weeds, which corresponds to a 95% control effect at an application of 200g a.i/10a. Whereas, some chloroacetamide derivatives derived from 4-chloroaniline or 3,4-dichloroaniline had very weak herbicidal effects on grass and broad leaf weeds.

  • PDF

Production and High Temperature Mechanical Properties of Ti-TiC Composite by Reaction Milling (반응밀링법에 의한 Ti-TiC 복합재료의 제조 및 고온 기계적 특성)

  • Jin, Sang-Bok;Choe, Cheol-Jin;Lee, Sang-Yun;Lee, Jun-Hui;Kim, Sun-Guk
    • Korean Journal of Materials Research
    • /
    • v.8 no.10
    • /
    • pp.918-924
    • /
    • 1998
  • This study has been carried out to investigate the effect of reaction milling time on the synthesis of Ti- TiC p powder synthesised from the elemental titanium and activated carbon by reaction milling(RM), and the effect of vacu­u urn hot pressing temperature and TiC volume fraction on microstructural and mechanical properties of Ti- TiC com­p posite $\infty$ns이idated by vacuum hot pressing(VHP).T The elemental powders of titanium and activated carbon can be converted into Ti- TiC composite powders by reac­t tion milling for about 300hours, and were the average grain size of the as- milled powders has been measured to be a about $5\mu\textrm{m}$. The relative density of Ti- TiC VHPed above $1000^{\circ}C$ during Ihr is about 98% and the mechanical properties o of In- situ Ti- TiC composites are improved by TiC particle dispersed uniformly on titanium matrix. In order to investi­g gate thermal stability of Ti- TiC composite, after annealing at $600^{\circ}C$ for 80hrs micro- Vickers hardness have been per­f formed, and the values have been shown little changed as compared with those before annealing. The compact has b been tested on high temperature compressive test at $700^{\circ}C$ and has showed a high temperature compressive strength of 330MPa in a Ti- 20vol% TiC.

  • PDF

BaTiO3 Particles of Core-Shell Structure for Aqueous Paste to Avoid VOC Emission during MLCC Manufacturing Process (MLCC 제조공정에서 VOC배출 억제를 위한 수계 Paste용 BaTiO3 코팅분말의 합성)

  • Kim, Jin-Su;Choi, Guang J.
    • Clean Technology
    • /
    • v.8 no.4
    • /
    • pp.173-180
    • /
    • 2002
  • As a primary material for MLCC, $BaTiO_3$ particles coated with two additives in a core-shell structure were prepared in this study. This composite powder can not only reduce the VOC emission during MLCC manufacture but also increase the density and reliability of electronic products. The additives were $Y_2O_3$ and $MnCO_3$, whose composition information was obtained from domestic companies. It was observed that the surface of $BaTiO_3$ particles was uniformly as well as simultaneously coated by those two materials via urea-decomposition reaction over $70^{\circ}C$ as the reaction temperature. Elemental analysis indicated that the measured content of each additve was quite close to the designated value. The effect of polymeric dispersant such as PVP, on the coating characteristics was not as significant as expected.

  • PDF

Purification and Characterization of an Antifungal Antibiotic from Bacillus subtilis LAM 97-44 (Bacillus subtilis LAM 97-44가 생산하는 항진균성 항생물질의 정제 및 특성)

  • Lee, No-Woon;Kwon, Tae-Jong;Yi, Dong-Heui
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.69-73
    • /
    • 2003
  • A novel antifungal antibiotic for azole-resistant Candida albicans was purified from the culture broth of Bacillus subtilis LAM 97-44 by butanol extraction, Diaion HP-20 and Dowex-50 adsorption chromatography, silica gel flash chromatography followed by HPLC and designated LAM-44A. LAM-44A was stable for 60 min at $100^{\circ}C$, and pH range from 2 to 10. MIC values were observed at $0.5-3.5\;{\mu}g/ml$ against various Candida albicans strains. The antibiotic showed no cytotoxicity for S180, MKN-45, P388, HeLa and 373 at the concentration of 1 mg/ml. LAM-f4A was colorless powder soluble in water, methanol, ethanol, butanol and negative to ninhydrin reaction. The antibiotic had maximum absorption at 273 nm in methanol, and melting point was $202^{\circ}C$. The molecular weight and formula were determined to be 282 and $C_{14}H_{34}O_5$ by $^1H-NMR,\;^{13}C-NMR$, IR spectrum and elemental analysis.

The Magnetic Properties of Amorphus Phase in Mechanically Alloyed $Fe_{50}Zr_{50}$ Powders (기계적 합금화한 비정질 $Fe_{50}Zr_{50}$ 분말의 자기특성)

  • 이성의;나형용;김원태;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Amorphous $Fe_{50}Zr_{50}$ alloy has been manufactured by mechanical alloying from pure elemental powders of Fe and Zr in conventional ball mill under an Ar atmosphere. Structure and magnetic properties of the amorphous phase were studied by transmission electron microscopy and SQUID magnetometry. Selected area diffraction patterns taken from the mechanically alloyed powders showed two halo rings, indicating coexistence of Fe rich and Zr rich amorphous phases in mechanically alloyed powder. Curie temperature of the Fe rich amorphous phase, measured by Arrot plot, was 195 K. Fe content in the ferromagnetic amorphous phase, estimated from the Curie temperature, was about 65 at%. Spin wave stiffness constant of $Fe_{50} Zr_{50}$ alloys processed for 100 and 200 hrs were 52.2 and 63.8 meV, respectively. The higher spin wave stiffness constant in 200 hrs milled powders may arise from the precipitation of $\alpha$-Fe by partial crystallization of amorphous phase.

  • PDF

Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution (Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.290-298
    • /
    • 2009
  • In this paper, the Fe-activated carbon fiber (ACF)/$TiO_2$ composite catalysts were prepared by a sol-gel method. The synthesized photocatalysts were used for the photo degradation of Methylene blue solution under UV light. From Brunauer-Emmett-Teller measurements (BET) data, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe and Ti compound. As shown in SEM images, the ferric compounds and titanium dioxides were fixed onto the ACF surfaces. The result of X-ray powder diffraction showed that the crystal phase contained a mixing anatase and rutile structure and the 'FeO+$TiO_2$' from the composites. The EDX spectra for the elemental analysis showed the presence of C, O, and Ti with Fe peaks. Degradation activity of MB could be attributed to +OH radicals derived from electron/hole pair's reactions due to photolysis of $TiO_2$ and photo-Fenton effect of Fe.

Clean and Efficient Synthesis of Furfural From Xylose by Microwave-Assisted Biphasic System using Bio-Based Heterogeneous Acid Catalysts

  • Vo, Anh Thi Hoang;Lee, Hong-shik;Kim, Sangyong;Cho, Jin Ku
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.250-257
    • /
    • 2016
  • As an attempt to replacing petroleum-based chemicals with bio-based ones, synthesis of furfural from biomass-derived xylose attracts much attention in recent days. Conventionally, furfural from xylose has been produced via the utilization of highly corrosive, toxic, and environmentally unfriendly mineral acids such as sulfuric acid or hydrochloric acid. In this study, microwave-assisted biphasic reaction process in the presence of novel bio-based heterogeneous acid catalysts was developed for the eco-benign and effective synthesis of furfural from xylose. The microwave was irradiated for reaction acceleration and a biphasic system consisting of $H_2O$ : MIBK (1 : 2) was designed for continuous extraction of furfural into the organic phase in order to reduce the undesired side products formed by decomposition/condensation/oligomerization in the acidic aqueous phase. Moreover, sulfonated amorphous carbonaceous materials were prepared from wood powder, the most abundant lignocellulosic biomass. The prepared catalysts were characterized by FT-IR, XPS, BET, elemental analysis and they were used as bio-based heterogeneous acid catalysts for the dehydration of xylose into furfural more effectively. For further optimization, the effect of temperature, reaction time, water/organic solvent ratio, and substrate/catalyst ratio on the xylose conversion and furfural yield were investigated and 100% conversion of xylose and 74% yield of furfural was achieved within 5 h at $180^{\circ}C$. The bio-based heterogeneous acid catalysts could be used three times without any significant loss of activity. This greener protocol provides highly selective conversion of xylose to furfural as well as facile isolation of product and bio-based heterogeneous acid catalysts can alternate the environmentally-burdened mineral acids.

Study on the Corrosion Characteristics in the Slag Line of SEN Oxide Refractory (산화물계 SEN내화물의 슬래그 라인부 침식특성 연구)

  • Sung, Young Taek;Son, Jeong Hun;Lee, Sung Seok;Bae, Dong Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • The corrosion resistance of submerged entry nozzle (SEN) materials were investigated for high-class steel manufacturing. Composite samples were fabricated by mixing $ZrO_2$, $Al_2O_3$, MgO, mullite, spinel, and carbon. The raw materials were mixed with attrition milling, compacted in a uniaxial pressure of 200MPa and calcined at $1000^{\circ}C$ for 3 h in $N_2$ atmosphere. The bulk density and apparent porosity of the calcined samples were measured by the liquid displacement method in water using Archimedes's principle. The corrosion resistance of the samples were measured by cup test with mold powder at $1550^{\circ}C$ for 2 h. The microstructure and elemental analysis of samples were observed by scanning electron microscopy (SEM), energy dispersive spectrum (EDS), and X-ray diffraction pattern (XRD). The XRD result shows that the starting raw materials were crystalline phase. The microstructure of fabricated specimen was investigated before and after corrosion tests at $1000^{\circ}C$ and $1550^{\circ}C$ for 2h. $ZrO_2$-C composite showed good resistance in the slag corrosion test. Among the composite oxide materials, $ZrO_2-Al_2O_3$-C and $ZrO_2$-MgO-C showed better resistance than $ZrO_2$-C in the slag corrosion test. The diameter variation index of $ZrO_2$-C refractory was 16.1 at $1000^{\circ}C$ for 2 h. The diameter variation index of the $ZrO_2-Al_2O_3$-C refractory was larger than that of the $ZrO_2$-C refractory at $1550^{\circ}C$ for 2 h.

Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO2-C Powder Mixtures (알루미늄 용탕에서 Al-TiO2-C의 연소합성반응에 의한 in-situ Al/TiC 복합재료의 제조에 미치는 공정변수의 영향)

  • Kim, Hwa-Jung;Lee, Jung-Moo;Cho, Young-Hee;Kim, Jong-Jin;Kim, Su-Hyeon;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.9
    • /
    • pp.677-684
    • /
    • 2012
  • A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of $Al-TiO_2-C$ pellet was directly added into an Al melt at $800-920^{\circ}C$ to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in $1-2{\mu}m$ at the melt temperature above $850^{\circ}C$. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, $Al_3Ti$. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.