• Title/Summary/Keyword: Elemental Mercury

Search Result 55, Processing Time 0.026 seconds

Mercury Adsorption of Chemically Modified Polysaccharide from Methylobacterium organophilum

  • Lee, Jung-Gul;Kim, Sang-Yong;Oh, Deok-Kun;Kim, Jung-Hoe
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.209-212
    • /
    • 1998
  • Methylan, a polysaccharide produced from Methylobacterium organophilum, was chemically modified by adding diethylaminoethyl (DEAE) group to the backbone of methylan. The structure of DEAE-methylan was determined by measuring its nitrogen content obtained from an elemental analysis. From the analysis of mass spectrum, the DEAE group in DEAE-methylan was also confirmed by determining diethylaminoethene as a separate form of DEAE. Mercury adsorption of DEAE-methylan was higher than that of native methylan. This fact was valid for a variety of pH, reaction times, metal concentrations, and polysaccharide concentrations. In particular, native methylan and DEAE-methylan adsorbed 16% (w/w) and 18% (w/w) for mercury after 30 min at pH 7, respectively. The increase in mercury adsorption of DEAE-methylan may be resulted from mercury adsorption by the lone pair electron of nitrogen atom in DEAE group.

  • PDF

Accidentally Induced Mercury Poisoning by Charlatan -Report of a Case- (수은 중독 1예 -병예 보고-)

  • 한경수
    • Journal of Oral Medicine and Pain
    • /
    • v.9 no.1
    • /
    • pp.29-33
    • /
    • 1984
  • Dental mercury was injected accidentally to left upper buccal mucosa of a 16-year-old girl by charlatan in order to anesthetize a tooth for extraction; thereafter,injected elemental mercury was almost removed by drug adimnistration and surgical operations.One year have passed, still, there are many scaffered small radiopaque white globular cimages in dental, maxillo-facial, and chest radiographs. Redish swollen gingiva and mobility of left upper central incisor which is adjacent to mercury injection site are oral manifestations in this mercury poisoning case. Recently, the patient complains of metallic taste, gastric discomfort and abdominal pain which are thought to be symptoms of mercury poisoning, but there seems to be no serious sequelae now.

  • PDF

A Feasibility Assessment of CMDS (Coal Mine Drainage Sludge) in the Stabilization of Mercury Contaminated Soil in Mine Area (광산지역 수은 오염토양 안정화를 위한 석탄광산배수슬러지의 적용성 평가)

  • Koh, Il-Ha;Kwon, Yo Seb;Moon, Deok Hyun;Ko, Ju In;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2020
  • This study assessed the feasibility of coal mine drainage sludge (CMDS) as a stabilizing agent for mercury contaminated soil through pot experiments and batch tests. In the pot experiments with 43 days of lettuce growth, the bioavailability of mercury in the amended soil and mercury content of the lettuce were decreased by 46% and 50%, respectively. These results were similar to those of the soil amended with the sulfide compound (FeS) generally used for mercury stabilization. Thus, CMDS could be an attractive mercury stabilizer in terms of industrial by-product recycling. Batch tests were conducted to examine mercury fractionation including reactions between the soil and acetic acid. The result showed that some elemental fraction changed to strongly bounded fraction rather than residual (HgS) fraction. This made it possible to conclude that mercury adsorption on oxides in CMDS was the major mechanism of stabilization.

Gas-Phase Mercury Control Technology from Flue Gas (연소배가스로부터 가스상 수은 처리기술)

  • 이시훈
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2003
  • In Korea, not much interest has been paid yet to mercury among flue gas HAPs (Hazardous Air Pollutants), but mercury is expected to become a major problem in the near future. The present paper investigates the current state of mercury emission and control technologies. Interest of the U.S. and European countries in the area of air pollution has been recently directed to mercury emitted from power plants. There are largely two mercury removal technologies applied to power plants. One is removing mercury by oxidizing elemental mercury in WFGD (Wet Flue Gas Desulfurization), and the other is spraying an adsorbent such as activated carbon or other novel sorbents (low-cost sorbents). Developed country is requiring that all power plants be equipped with mercury control facilities by 2007. This paper aims at contributing to the establishment of future strategies in response to the problem.

Fate and Transport of Mercury in Environmental Media and Human Exposure

  • Kim, Moon-Kyung;Zoh, Kyung-Duk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.335-343
    • /
    • 2012
  • Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental ($Hg^0$) and divalent ($Hg^{2+}$) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly $Hg^{2+}$, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.

A review of elemental mercury removal processing

  • Bae, Kyong-Min;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.121-130
    • /
    • 2011
  • Public concern has recently increased over the potential risk of toxic elements emitted from anthropogenic sources. Among these, mercury has drawn special attention owing to its increasing level of bioaccumulation in the environment and in the food chain, with potential risks for human health. This paper presents an overview of research related to mercury control technology and identifies areas requiring additional research and development. It critically reviews measured mercury emissions progress in the development of promising control technologies, including catalytic oxidation, sorbent injection, photochemistry oxidation, and air pollution control devices.

Studies of the Exchange Processes of Mercury Across Air-soil Boundary (대기-토양 경계면간 수은의 교환현상에 대한 연구)

  • Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.2
    • /
    • pp.107-117
    • /
    • 2010
  • The atmospheric geochemistry of mercury is generalls represented by gaseous elemental phase that exhibits the high environmental mobility and relatively long atmospheric residence time (c.a., 1 year) with its high chemical stability. In the recognition of the environmental significance of its global cycling, enormous efforts have been devoted to the measurements of Hg exchange across air-soil boundary. To be able to describe the fundamental aspects on this subject, the current development in the measurements of atmospheric exchange rates of mercury has been summarized using the current database reported worldwide. As a first step, different techniques commonly employed in its measurements are introduced with the discussions on their merits and disadvantages. Then, the results derived from various field measurement campaigns are also compared and discussed. The direction for the future study of mercury is presented at last.

Hg(0) Removal Using Se(0)-doped Montmorillonite from Selenite(IV)

  • Lee, Joo-Youp;Kim, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3767-3770
    • /
    • 2013
  • Potassium methylselenite ($KSeO_2(OCH_3)$) was reduced to elemental selenium, Se(0), and then doped onto montmorillonite K 10 (MK10) clay to examine the interaction between elemental mercury (Hg(0)) vapor and Se(0) in an effort to understand the possible heterogeneous reaction of Hg(0) vapor and Se(0) solid. The clay was used as a cost-effective support material for uniform dispersion of Se(0). The Se(0)-doped MK10 showed an excellent reaction performance with Hg(0) under an inert nitrogen gas at 70 and $140^{\circ}C$ in our lab-scale fixed-bed system. However, the precursor, $KSeO_2(OCH_3)$-doped MK10 showed a negligible reaction performance with Hg(0), suggesting that the oxidation state of selenium plays a key role in the reaction of Hg(0) vapor and selenium compounds.