DOI QR코드

DOI QR Code

Fate and Transport of Mercury in Environmental Media and Human Exposure

  • Kim, Moon-Kyung (Department of Environmental Health, Seoul National University School of Public Health) ;
  • Zoh, Kyung-Duk (Department of Environmental Health, Seoul National University School of Public Health)
  • Received : 2012.09.11
  • Accepted : 2012.11.05
  • Published : 2012.11.30

Abstract

Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental ($Hg^0$) and divalent ($Hg^{2+}$) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly $Hg^{2+}$, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans.

Keywords

References

  1. United Nations Environment Programme. The global atmospheric mercury assessment: sources, emissions and transport.Geneva: United Nations Environment Programme; 2008, p. 13-62.
  2. Cranmer M, Gilbert S, Cranmer J. Neurotoxicity of mercury--indicators and effects of low-level exposure: overview. Neurotoxicology 1996;17(1):9-14.
  3. Ministry of Environment. Development of management of the products containing mercury. Gwacheon: Ministry of Environment; 2005, p. 26-31 (Korean).
  4. Ministry of Environment. Basic study of heavy metal levels among Korean adult in 2005. Gwacheon: Ministry of Environment; 2006, p. 69-86 (Korean).
  5. United Nations Environment Programme. Global mercury assessment. Geneva: United Nations Environment Programme; 2002, p. 13-42.
  6. Schroeder WH, Munthe J. Atmospheric mercury: an overview. Atmos Environ 1998;32(5):809-822.
  7. Mason RP, Fitzgerald WF, Morel MM. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochim Cosmochim Acta 1994;58(15):3191-3198.
  8. Han YJ, Holsen TM, Lai SO, Hopke PK, Yi SM, Liu W, et al. Atmospheric gaseous mercury concentration in New York State: relationships with meterological data and other pollutants. Atmos Environ 2004;38(37):6431-6446.
  9. Park JS, Oh S, Shin MY, Kim MK, Yi SM, Zoh KD. Seasonal variation in dissolved gaseous mercury and total mercury concentrations in Juam Reservoir, Korea. Environ Pollut 2008;154(1):12-20.
  10. Selin NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaegle L, et al. Chemical cycling and deposition of atmospheric mercury:global constraints from observations. J Geophys Res 2007;112:D02308.
  11. Munthe J, Wangberg I, Iverfeldt A, Lindqvist O, Stromberg D, Sommar J, et al. Distribution of atmospheric mercury species in Northern Europe: final results from the MOE project. Atmos Environ 2003;37(Suppl 1):S9-S20.
  12. Pacyna EG, Pacyna JM, Steenhuisen F, Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmos Environ 2006;40(22):4048-4063.
  13. Hylander LD, Meili M. 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 2003;304(1-3):13-27.
  14. Wilson SJ, Steenhuisen F, Pacyna JM, Pacyna EG. Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmos Environ 2006;40(24):4621-4632.
  15. Nelson PF. Atmospheric emissions of mercury from Australian point sources. Atmos Environ 2007;41(8):1717-1724.
  16. Jiang GB, Shi JB, Feng XB. Mercury pollution in China. An overview of the past and current sources of the toxic metal. Environ Sci Technol 2006;40(12):3673-3678.
  17. Pacyna EG, Pacyna JM. Global emission of mercury from anthropogenic sources in 1995. Water Air Soil Pollut 2002;137(1- 4):149-165.
  18. Gan SY, Yi SM, Han YJ. Characteristics of atmospheric speciated gaseous mercury in Chuncheon, Korea. Korean J KSEE 2009;31(5):382-391 (Korean).
  19. Wu Y, Wang S, Streets DG, Hao J, Chan M, Jiang J. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 2006;40(17):5312-5318.
  20. Wang SX, Zhang L, Li GH, Wu Y, Hao JM, Pirrone N, et al. Mercury emission and speciation of coal-fired power plants in China. Atmos Chem Phys 2010;10:1183-1192.
  21. Feng X, Streets D, Hao J, Wu Y, Li G. Mercury emissions from industrial sources in China. In: Pirrone N, Mason RP, editors. Mercury fate and transport in the global atmosphere. New York: Springer; 2009, p.67-79.
  22. Streets DG, Hao J, Wang S, Wu Y. Mercury emissions from coal combustion in China. In: Pirrone N, Mason RP, editors. Mercury fate and transport in the global atmosphere. New York: Springer; 2009, p. 51-65.
  23. Pirrone N, Cinnirella S, Feng X, Finkelman RB, Friedli HR, Leaner J, et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmos Chem Phys Discuss 2010;10:4719-4752.
  24. Schuster PF, Krabbenhoft DP, Naftz DL, Cecil LD, Olson ML, Dewild JF, et al. Atmospherc mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environ Sci Technol 2002;36(11):2303-2310.
  25. Wagemann R, Innes S, Richard PR. Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic. Sci Total Environ 1996; 186(1-2):41-66.
  26. Evers DC, Kapaln JD, Reaman PS, Meyer MW, Braselton WE, Major A, et al. Geographic trend in mercury measured in comon loon feathers and blood. Environ Toxicol Chem 1998;17(2):173-183.
  27. Muir D, Fisk A, Kwan M. Temporal trends of persistent organic pollutants and metals in ringed seals from the Canadian Arctic. In: Kalhok S, editor. Synopsis of research conducted under the 2000-2001 Northern Contaminants Program. Ottawa: Indian and Northern Affairs; 2001, p. 208-214.
  28. Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C. Global source attribution for mercury deposition in the United States. Environ Sci Technol 2004;38(2):555-569.
  29. Weiss-Penzias P, Jaffe DA, Swartzendruber P, Dennison JB, Chand D, Hafner W, et al. Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J Geophys Res 2006;111:D10304.
  30. Fitzgerald WF, Mason RP, Vandal GM. Atmospheric cycling and air-water exchange of mercury over mid-continental regions. Water Air Soil Pollut 1991;56(1):745-767.
  31. Keeler GJ, Hoyer ME, Lamborg CH. Measurements of atmospheric mercury in the Great Lakes basin. In: Watras CJ, Huckabee JW, editors. Mercury pollution: integration and synthesis. Boca Raton: Lewis Publishers; 1994, p. 231-241.
  32. Slemr F, Schuster G, Seiler W. Distribution, speciation, and budget of atmospheric mercury. J Atmos Chem 1985;3(4):407-434.
  33. Tokos J, Hall B, Calhoun J, Prestbo EM. Homogeneous gasphase reaction of Hg0 with H2O2, O3, CH3I, and(CH3)2S: implications for atmospheric Hg cycling. Atmos Environ 1998;32(5):823-827.
  34. Amyot M, Mierle G, Lean D, McQueen DJ. Effects of solar radiation on the formation of dissolved gaseous mercury in temperature lakes. Geochim Cosmochim Acta 1997;61(5):975-987.
  35. Waite DT, Snihura AD, Liu Y, Huang GH. Uptake of atmospheric mercury by deionized water and aqueous solutions of inorganic salts at acidic, neutral and alkaline pH. Chemosphere 2002;49(3):341-351.
  36. Ravichandran M. Interactions between mercury and dissolved organic matter: a review. Chemosphere 2004;55(3):319-331.
  37. Zhang H, Lindberg SE. Sunlight and iron(III)-induced photochemical production of dissolved gaseous mercury in freshwater. Environ Sci Technol 2001;35(5):928-935.
  38. Xiao ZF, Munthe J, Schroeder WH, Lindqvist O. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus B 1991;43(3):267-279.
  39. Lindberg SE, Meyers TP, Munthe J. Evasion of mercury vapor from the surface of a recently limed acid forest lake in Sweden. Water Air Soil Pollut 1995;85(2):725-730.
  40. Ullrich SM, Tanton TW, Abdrashitova SA. Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 2001;31(3):241-293.
  41. Selvendiran P, Driscoll CT, Bushey JT, Montesdeoca MR. Wetland influence on mercury fate and transport in a temperate forested watershed. Environ Pollut 2008;154(1):46-55.
  42. Mason RP, Reinfelder JR, Morel FM. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 1995;80(1-4): 915-921.
  43. Clerckner LB, Gilmour CC, Hurley JP, Krabbenhoft DP. Mercury methylation in periphyton of the Florida everglades. Limnol Oceanogr 1999;44(7):1815-1825.
  44. Sellers P, Kelly CA, Rudd JW. Fluxes of methylmercury to the water column of a drainage lake: the relative importance of internal and external sources. Limnol Oceanogr 2001;46(3): 623-631.
  45. Hintelmann H, Harris R, Heyes A, Hurley JP, Kelly CA, Krabbenhoft DP, et al. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. Mercury experiment to assess atmospheric loading in Canada and the US. Environ Sci Technol 2002;36(23):5034-5040.
  46. Celo V, Lean DR, Scott SL. Abiotic methylation of mercury in the aquatic environment. Sci Total Environ 2006;368(1):126-137.
  47. Eckley CS, Hintelmann H. Determination of mercury methylation potentials in the water column of lakes across Canada. Sci Total Environ 2006;368(1):111-125.
  48. US Environmental Protection Agency. The mercury study report to congress; 1997 [cited 2012 Nov 1]. Available from:http://www.epa.gov/mercury/report.htm.
  49. US Environmental Protection Agency. Lake Michigan Mass Balance [cited 2012 Nov 1]. Available from: http://www.epa. gov/glnpo/lmmb.
  50. Mason RP, Lawson NM, Sheu GR. Annual and seasonal trends in mercury deposition in Maryland. Atmos Environ 2000;34(11):1691-1701.
  51. Sakata M, Marumoto K. Wet and dry deposition fluxes of mercury in Japan. Atmos Environ 2005;39(17):3139-3146.
  52. Keeler GJ, Landis MS, Norris GA, Christianson EM, Dvonch JT. Sources of mercury wet deposition in Eastern Ohio, USA. Environ Sci Technol 2006;40(19):5874-5881.
  53. Lai S, Holsen TM, Hopke PK, Liu P. Wet deposition of mercury at a New York state rural site: concentrations, fluxes, and source areas. Atmos Environ 2007;41(21):4337-4348.
  54. Guo Y, Feng X, Li Z, He T, Yan H, Meng B, et al. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmos Environ 2008;42(30):7096- 7103.
  55. Selin NE, Jacob DJ. Seasonal and spatial patterns of mercury wet deposition in the Unites States: constraints on the contribution from North American anthropogenic sources. Atmos Environ 2008;42(21):5193-5204.
  56. Prestbo EM, Gay DA. Wet deposition of mercury in the U.S. and Canada, 1996-2005: results and analysis of the NADP mercury deposition network (MDN). Atmos Environ 2009; 43(27):4223-4233.
  57. Seo YS, Han YJ, Choi HD, Holsen TM, Yi SM. Characteristics of total mercury (TM) wet deposition: scavenging of atmospheric mercury species. Atmos Environ 2012;49:69-76.
  58. Ahn MC, Yi SM, Holsen TM, Han YJ. Mercury wet deposition in rural Korea: concentrations and fluxes. J Environ Monit 2011;13:2748-2754.
  59. Oh S, Kim MK, Yi SM, Zoh KD. Distributions of total mercury and methylmercury in surface sediments and fishes in Lake Shihwa, Korea. Sci Total Environ 2010;408(5):1059-1068.
  60. Choi EM, Kim SH, Holsen TM, Yi SM. Total gaseous concentrations in mercury in Seoul, Korea: local sources compared to long-range transport from China and Japan. Environ Pollut 2009;157(3):816-822.
  61. Hertz-Picciotto I, Green PG, Delwiche L, Hansen R, Walker C, Pessah IN. Blood mercury concentrations in CHARGE Study children with and without autism. Environ Health Perspect 2010;118(1):161-166.
  62. World Health Organization. Mercury: children's health and the environment; 2008 [cited 2012 Nov 1]. Available from: http://www.who.int/ceh/capacity/Mercury.pdf.

Cited by

  1. Evaluation of the use of metallothionein as a biomarker for detecting physiological responses to mercury exposure in the bonnethead, Sphyrna tiburo vol.40, pp.5, 2012, https://doi.org/10.1007/s10695-014-9930-y
  2. Evaluation of Various Inorganic and Biological Extraction Techniques Suitability for Soil Mercury Phytoavailable Fraction Assessment vol.226, pp.6, 2015, https://doi.org/10.1007/s11270-015-2458-7
  3. Metallic Profile of Whole Blood and Plasma in a Series of 99 Healthy Children vol.39, pp.9, 2012, https://doi.org/10.1093/jat/bkv088
  4. Mercury accumulation and its effects on molecular, physiological, and histopathological responses in the peacock blenny Salaria pavo vol.23, pp.21, 2012, https://doi.org/10.1007/s11356-016-7401-y
  5. Methylmercury Increases and Eicosapentaenoic Acid Decreases the Relative Amounts of Arachidonic Acid-Containing Phospholipids in Mouse Brain vol.51, pp.1, 2012, https://doi.org/10.1007/s11745-015-4087-8
  6. Effects of zinc against mercury toxicity in female rats 12 and 48 hours after HgCl2 exposure vol.15, pp.None, 2016, https://doi.org/10.17179/excli2015-709
  7. Atg5-dependent autophagy plays a protective role against methylmercury-induced cytotoxicity vol.262, pp.None, 2012, https://doi.org/10.1016/j.toxlet.2016.09.007
  8. Recent trends in common chemical feed and food contaminants in Israel vol.35, pp.4, 2012, https://doi.org/10.1080/10590501.2017.1391507
  9. Mortality and transcriptional effects of inorganic mercury in the marine copepod Calanus finmarchicus vol.80, pp.16, 2012, https://doi.org/10.1080/15287394.2017.1352198
  10. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract vol.80, pp.23, 2012, https://doi.org/10.1080/15287394.2017.1382408
  11. The new Israeli feed safety law: challenges in relation to animal and public health vol.97, pp.4, 2012, https://doi.org/10.1002/jsfa.8064
  12. Case study of occupational mercury exposure during decontamination of turnaround in refinery plant vol.23, pp.1, 2012, https://doi.org/10.1080/10773525.2018.1425657
  13. Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing Age in the united states using NHANES data from 1999–2010 vol.16, pp.None, 2012, https://doi.org/10.1186/s12940-017-0218-4
  14. The Putative Role of Environmental Mercury in the Pathogenesis and Pathophysiology of Autism Spectrum Disorders and Subtypes vol.55, pp.6, 2012, https://doi.org/10.1007/s12035-017-0692-2
  15. Effects of phosphorus on uptake and translocation of methylmercury in rice vol.100, pp.1, 2012, https://doi.org/10.1080/02772248.2018.1429355
  16. Passive Sampling of Gaseous Elemental Mercury Based on a Composite TiO 2 NP/AuNP Layer vol.8, pp.10, 2012, https://doi.org/10.3390/nano8100798
  17. Testicular Cancer: Genes, Environment, Hormones vol.10, pp.None, 2012, https://doi.org/10.3389/fendo.2019.00408
  18. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases vol.187, pp.2, 2012, https://doi.org/10.1007/s12011-018-1380-4
  19. Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan vol.26, pp.17, 2012, https://doi.org/10.1007/s11356-019-05176-0
  20. Mercury health risk assessment among petrochemical workers in Rayong Province, Thailand vol.25, pp.6, 2012, https://doi.org/10.1080/10807039.2018.1465812
  21. The dietary intake of mercury from rice and human health risk in artisanal small-scale gold mining area, Indonesia vol.7, pp.5, 2012, https://doi.org/10.2131/fts.7.215
  22. The association between mercury concentrations and lipid profiles in the Korean National Environmental Health Survey (KoNEHS) cycle 3 vol.32, pp.1, 2012, https://doi.org/10.35371/aoem.2020.32.e19
  23. High Mercury Levels in the Indigenous Population of the Yaigojé Apaporis National Natural Park, Colombian Amazon vol.194, pp.1, 2020, https://doi.org/10.1007/s12011-019-01760-0
  24. Computational Chemistry-Based Evaluation of Metal Salts and Metal Oxides for Application in Mercury-Capture Technologies vol.59, pp.19, 2020, https://doi.org/10.1021/acs.iecr.0c00902
  25. Characteristics and Performances of a Nanostructured Material for Passive Samplers of Gaseous Hg vol.20, pp.21, 2012, https://doi.org/10.3390/s20216021
  26. Variation in Methylmercury Metabolism and Elimination in Humans: Physiological Pharmacokinetic Modeling Highlights the Role of Gut Biotransformation, Skeletal Muscle, and Hair vol.180, pp.1, 2021, https://doi.org/10.1093/toxsci/kfaa192
  27. Ecotoxicological effects of microplastics on aquatic organisms: a review vol.28, pp.33, 2021, https://doi.org/10.1007/s11356-021-14982-4
  28. Gaseous Elemental Mercury Exchange Fluxes over Air-Soil Interfaces in the Degraded Grasslands of Northeastern China vol.10, pp.9, 2021, https://doi.org/10.3390/biology10090917
  29. Ecological risk assessment of trace metals in sediment from the Old Brahmaputra River in Bangladesh vol.37, pp.9, 2012, https://doi.org/10.1080/02757540.2021.1989422